
Interval Estimates
Measures of location and dispersion such as the sample
mean and standard deviation that consist of a single value
are called point estimators .

Interval Estimation – p. 1/17



Interval Estimates
Measures of location and dispersion such as the sample
mean and standard deviation that consist of a single value
are called point estimators .
A shortcoming of this type of estimator is that it provides no
information about how precise or reliable the estimate is.

Interval Estimation – p. 1/17



Interval Estimates
Measures of location and dispersion such as the sample
mean and standard deviation that consist of a single value
are called point estimators .
A shortcoming of this type of estimator is that it provides no
information about how precise or reliable the estimate is.
An alternative type of estimate is an interval estimate ,
which instead of a single value provides a range of values.
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Interval Estimates
Measures of location and dispersion such as the sample
mean and standard deviation that consist of a single value
are called point estimators .
A shortcoming of this type of estimator is that it provides no
information about how precise or reliable the estimate is.
An alternative type of estimate is an interval estimate ,
which instead of a single value provides a range of values.
We will cover three approaches to constructing interval
estimates:

The classical or frequentist approach which produces a
confidence interval

The Bayesian approach with produces a credible
interval

The bootstrap procedure which produces a bootstrap
confidence interval
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Confidence Intervals
We start off by deciding the fraction we want to contain the
parameter, usually by specifying the fraction of intervals
that will not contain it, which is called α and is often chosen
to be .05.
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Confidence Intervals
We start off by deciding the fraction we want to contain the
parameter, usually by specifying the fraction of intervals
that will not contain it, which is called α and is often chosen
to be .05.

The classical or frequentist approach then constructs a
confidence interval in such a way that, regardless of the
actual value of the target parameter, if we took a great
many samples and constructed a confidence interval for
each sample, the percentage of them that actually contain
the parameter value would approach

100(1 − α)% or 95% if α = .05
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Confidence Intervals
We start off by deciding the fraction we want to contain the
parameter, usually by specifying the fraction of intervals
that will not contain it, which is called α and is often chosen
to be .05.

The classical or frequentist approach then constructs a
confidence interval in such a way that, regardless of the
actual value of the target parameter, if we took a great
many samples and constructed a confidence interval for
each sample, the percentage of them that actually contain
the parameter value would approach

100(1 − α)% or 95% if α = .05

Of course, we actually construct only one interval, and we
never know whether it contains the parameter or not.
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Confidence Intervals
This description of a confidence interval sounds
complicated, and it is.
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Confidence Intervals
This description of a confidence interval sounds
complicated, and it is.

One often hears a 95% confidence interval described as
"the true parameter value falls into this interval with
probability .95, but this is really not a correct statement
since the true parameter value is not assumed to be a
random variable in the frequentist approach.
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Confidence Intervals
This description of a confidence interval sounds
complicated, and it is.

One often hears a 95% confidence interval described as
"the true parameter value falls into this interval with
probability .95, but this is really not a correct statement
since the true parameter value is not assumed to be a
random variable in the frequentist approach.

One of the criticisms of the frequentist approach is that it
produces interval estimates that are difficult to describe
correctly.
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Confidence Intervals
Like a point estimate, an interval estimate is based on a
random sample.
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Confidence Intervals
Like a point estimate, an interval estimate is based on a
random sample.

It is constructed in a way that guarantees that, for a 95%
confidence interval, over the long run if we construct many
of them, the percentage of them that actually contain the
true value of the parameter approaches 95%.
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Confidence Intervals
Like a point estimate, an interval estimate is based on a
random sample.

It is constructed in a way that guarantees that, for a 95%
confidence interval, over the long run if we construct many
of them, the percentage of them that actually contain the
true value of the parameter approaches 95%.

The exact procedure for constructing a confidence interval
varies depending on the target parameter and what we
assume for the distribution and for other parameters.
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Confidence Intervals
Like a point estimate, an interval estimate is based on a
random sample.

It is constructed in a way that guarantees that, for a 95%
confidence interval, over the long run if we construct many
of them, the percentage of them that actually contain the
true value of the parameter approaches 95%.

The exact procedure for constructing a confidence interval
varies depending on the target parameter and what we
assume for the distribution and for other parameters.

We will confine our discussion to the most common special
cases.
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Classical Large Sample (sigma known)
Case 1: Sampling from a normal population where we
either know the actual population standard deviation, or
have a large enough sample (at least 30, preferably 50 or
more) so that we can reliably estimate it from the sample.
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Classical Large Sample (sigma known)
Case 1: Sampling from a normal population where we
either know the actual population standard deviation, or
have a large enough sample (at least 30, preferably 50 or
more) so that we can reliably estimate it from the sample.

It might seem unusual to know the standard deviation but
not the mean of an underlying normal population, but this
situation arises in the case of standardized measures such
as IQ and SAT.
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Classical Large Sample (sigma known)
Case 1: Sampling from a normal population where we
either know the actual population standard deviation, or
have a large enough sample (at least 30, preferably 50 or
more) so that we can reliably estimate it from the sample.

It might seem unusual to know the standard deviation but
not the mean of an underlying normal population, but this
situation arises in the case of standardized measures such
as IQ and SAT.

This is called a "large sample" or "sigma known" confidence
interval because we treat the population standard deviation
as a known quantity.
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Classical Large Sample (sigma known)
As noted previously, the Cumulative Distribution Function
F (x) of the normal distribution cannot be expressed in a
simple formula.
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As noted previously, the Cumulative Distribution Function
F (x) of the normal distribution cannot be expressed in a
simple formula.

With statistical software readily available, our main tool
evaluating the normal CDF F (x) will be a computer or
calculator.
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Classical Large Sample (sigma known)
As noted previously, the Cumulative Distribution Function
F (x) of the normal distribution cannot be expressed in a
simple formula.

With statistical software readily available, our main tool
evaluating the normal CDF F (x) will be a computer or
calculator.

The actual code for producing the value of F (x) is:

= NORMDIST (x, µ, σ, TRUE) for a spreadsheet

pnorm(x, µ, σ) for R
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Classical Large Sample (sigma known)
As noted previously, the Cumulative Distribution Function
F (x) of the normal distribution cannot be expressed in a
simple formula.

With statistical software readily available, our main tool
evaluating the normal CDF F (x) will be a computer or
calculator.

The actual code for producing the value of F (x) is:

= NORMDIST (x, µ, σ, TRUE) for a spreadsheet

pnorm(x, µ, σ) for R

Either method produces F (x) = P (X ≤ x) for a N(µ, σ)
distribution.

Interval Estimation – p. 6/17



Classical Large Sample (sigma known)
Sometimes we have the opposite problem: given a
probability value p, we want to find x such that

P (X ≤ x) = p when X ∼ N(µ, σ)
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Classical Large Sample (sigma known)
Sometimes we have the opposite problem: given a
probability value p, we want to find x such that

P (X ≤ x) = p when X ∼ N(µ, σ)

We could try different values of x with
NORMDIST (x, µ, σ, TRUE) or pnorm(x, µ, σ) but this would
be time consuming.
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Classical Large Sample (sigma known)
Sometimes we have the opposite problem: given a
probability value p, we want to find x such that

P (X ≤ x) = p when X ∼ N(µ, σ)

We could try different values of x with
NORMDIST (x, µ, σ, TRUE) or pnorm(x, µ, σ) but this would
be time consuming.

A better way is to use the inverse CDF functions:

= NORMINV (p, µ, σ) for a spreadsheet

qnorm(p, µ, σ) for R
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Classical Large Sample (sigma known)
Sometimes we have the opposite problem: given a
probability value p, we want to find x such that

P (X ≤ x) = p when X ∼ N(µ, σ)

We could try different values of x with
NORMDIST (x, µ, σ, TRUE) or pnorm(x, µ, σ) but this would
be time consuming.

A better way is to use the inverse CDF functions:

= NORMINV (p, µ, σ) for a spreadsheet

qnorm(p, µ, σ) for R

Either method produces x with the property that
F (x) = P (X ≤ x) = p for a N(µ, σ) distribution.
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Example
Find the value x with the property that a normal random
variable with mean µ = 100 and standard deviation σ = 15
takes a value less than or equal to x with probability
p = 0.05.
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Example
Find the value x with the property that a normal random
variable with mean µ = 100 and standard deviation σ = 15
takes a value less than or equal to x with probability
p = 0.05.

Using either of the inverse CDF functions:

x = NORMINV (.05, 100, 15) for a spreadsheet

x = qnorm(.05, 100, 15) for R

we find that x = 75.33.
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Example
Find the value x with the property that a normal random
variable with mean µ = 100 and standard deviation σ = 15
takes a value less than or equal to x with probability
p = 0.05.

Using either of the inverse CDF functions:

x = NORMINV (.05, 100, 15) for a spreadsheet

x = qnorm(.05, 100, 15) for R

we find that x = 75.33.

As a check, entering = NORMDIST (75.33, 100, 15) or
pnorm(75.33, 100, 15) should produce p = .05.
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Example
Find the value x with the property that a normal random
variable with mean µ = 500 and standard deviation σ = 100
takes a value less than or equal to x with probability
p = 0.98 (i.e., find the 98th percentile SAT score).
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Example
Find the value x with the property that a normal random
variable with mean µ = 500 and standard deviation σ = 100
takes a value less than or equal to x with probability
p = 0.98 (i.e., find the 98th percentile SAT score).

Using either of the inverse CDF functions:

x = NORMINV (.98, 500, 100) for a spreadsheet

x = qnorm(.98, 500, 100) for R

we find that x = 705.
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Example
Find the value x with the property that a normal random
variable with mean µ = 500 and standard deviation σ = 100
takes a value less than or equal to x with probability
p = 0.98 (i.e., find the 98th percentile SAT score).

Using either of the inverse CDF functions:

x = NORMINV (.98, 500, 100) for a spreadsheet

x = qnorm(.98, 500, 100) for R

we find that x = 705.

As a check, entering = NORMDIST (705, 500, 100) or
pnorm(705, 500, 100) should produce p = .98.
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Classical Large Sample (sigma known)
Suppose we have a sample X1, X2, . . . , Xn from a normal
population with unknown mean µ and known standard
deviation σ.

Now we present a procedure for constructing an interval
estimate (L,U) for the (unknown) mean µ.
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Classical Large Sample (sigma known)
Suppose we have a sample X1, X2, . . . , Xn from a normal
population with unknown mean µ and known standard
deviation σ.

Now we present a procedure for constructing an interval
estimate (L,U) for the (unknown) mean µ.

Suppose we want an interval (L,U) that contains the true
value µ with probability 1 − α.

Interval Estimation – p. 10/17



Classical Large Sample (sigma known)
Suppose we have a sample X1, X2, . . . , Xn from a normal
population with unknown mean µ and known standard
deviation σ.

Now we present a procedure for constructing an interval
estimate (L,U) for the (unknown) mean µ.

Suppose we want an interval (L,U) that contains the true
value µ with probability 1 − α.

The correct interpretation of this is that if we took a large
number of samples and constructed an interval (L,U) for
each sample, we would get many different intervals, and on
average 100(1 − α) percent of them would contain µ, that is,

P (L ≤ µ ≤ U) = 1 − α
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Classical Large Sample (sigma known)
First we choose the level of confidence we want. Let’s say
this is 95%. Solve the following equation to get α:

100(1 − α) = 95 or 1 −
95

100
= .05 = α
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Classical Large Sample (sigma known)
First we choose the level of confidence we want. Let’s say
this is 95%. Solve the following equation to get α:

100(1 − α) = 95 or 1 −
95

100
= .05 = α

Now we compute the endpoints (L,U) of the 100(1 − α)%
confidence interval using:

The α value derived from the level of confidence

x, the sample mean

σ the known population standard deviation.

The sample size n
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Classical Large Sample (sigma known)
Recall that in this situation, the sample mean has a normal
distribution:

x ∼ N

(

µ,
σ
√

n

)
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Classical Large Sample (sigma known)
Recall that in this situation, the sample mean has a normal
distribution:

x ∼ N

(

µ,
σ
√

n

)

Now we compute the endpoints (L,U) of the 100(1 − α)%
confidence interval using:

L = NORMINV (α/2, x, σ/
√

n) or
L = qnorm(α/2, x, σ/

√
n)

U = NORMINV (1 − α/2, x, σ/
√

n) or
U = qnorm(1 − α/2, x, σ/

√
n)
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Classical Large Sample (sigma known)
Recall that in this situation, the sample mean has a normal
distribution:

x ∼ N

(

µ,
σ
√

n

)

Now we compute the endpoints (L,U) of the 100(1 − α)%
confidence interval using:

L = NORMINV (α/2, x, σ/
√

n) or
L = qnorm(α/2, x, σ/

√
n)

U = NORMINV (1 − α/2, x, σ/
√

n) or
U = qnorm(1 − α/2, x, σ/

√
n)

Notice that once the values of α, n and σ are determined, L
and U depend only on x.
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Example
A random sample of 100 students in a large school district
are given the SAT. If the average score is 507, construct a
95% confidence interval for the mean SAT score in this
school district.
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Example
A random sample of 100 students in a large school district
are given the SAT. If the average score is 507, construct a
95% confidence interval for the mean SAT score in this
school district.

In this case, α = .05, n = 100, x = 507, and we assume that
σ is known to be 100 because the SAT is standardized to
have this value.
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Example
A random sample of 100 students in a large school district
are given the SAT. If the average score is 507, construct a
95% confidence interval for the mean SAT score in this
school district.

In this case, α = .05, n = 100, x = 507, and we assume that
σ is known to be 100 because the SAT is standardized to
have this value.

Then:
L = NORMINV (.025, 507, 10)

or L = qnorm(.025, 507, 10) = 487.4

and
U = NORMINV (.975, 507, 10)

or L = qnorm(.975, 507, 10) = 526.6
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Example
A random sample of 100 students in a large school district
are given the SAT. If the average score is 507, construct a
99% confidence interval for the mean SAT score in this
school district.
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Example
A random sample of 100 students in a large school district
are given the SAT. If the average score is 507, construct a
99% confidence interval for the mean SAT score in this
school district.

In this case, α = .01, n = 100, x = 507, and we assume that
σ is known to be 100 because the SAT is standardized to
have this value.
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Example
A random sample of 100 students in a large school district
are given the SAT. If the average score is 507, construct a
99% confidence interval for the mean SAT score in this
school district.

In this case, α = .01, n = 100, x = 507, and we assume that
σ is known to be 100 because the SAT is standardized to
have this value.

Then:
L = NORMINV (.005, 507, 10)

or L = qnorm(.005, 507, 10) = 481.24

and
U = NORMINV (.995, 507, 10)

or L = qnorm(.995, 507, 10) = 532.76
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Example
A random sample of 100 students in a large school district
are given the SAT. If the average score is 507, construct a
90% confidence interval for the mean SAT score in this
school district.
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Example
A random sample of 100 students in a large school district
are given the SAT. If the average score is 507, construct a
90% confidence interval for the mean SAT score in this
school district.

In this case, α = .10, n = 100, x = 507, and we assume that
σ is known to be 100 because the SAT is standardized to
have this value.
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Example
A random sample of 100 students in a large school district
are given the SAT. If the average score is 507, construct a
90% confidence interval for the mean SAT score in this
school district.

In this case, α = .10, n = 100, x = 507, and we assume that
σ is known to be 100 because the SAT is standardized to
have this value.

Then:
L = NORMINV (.05, 507, 10)

or L = qnorm(.005, 507, 10) = 490.55

and
U = NORMINV (.95, 507, 10)

or L = qnorm(.995, 507, 10) = 523.44
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Classical Large Sample (sigma known)
Generally the higher the level of confidence, the wider the
interval. For the preceding examples,
90% confidence (L,U)=(490.5,523.4)
95% confidence (L,U)=(487.4,526.6)
99% confidence (L,U)=(481.2,532.8)
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Classical Large Sample (sigma known)
Generally the higher the level of confidence, the wider the
interval. For the preceding examples,
90% confidence (L,U)=(490.5,523.4)
95% confidence (L,U)=(487.4,526.6)
99% confidence (L,U)=(481.2,532.8)

Notice that our confidence interval is interval centered at x
that would contain 100(1 − α) percent of the area under a
normal curve with mean x and standard deviation σ/

√
n.
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Example - R Simulations

There is an R program that simulates the behavior of
classical large sample confidence intervals from the notes
and handouts section of the web page. The link is named:

Classical large sample confidence intervals (R simulation)
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Example - R Simulations

There is an R program that simulates the behavior of
classical large sample confidence intervals from the notes
and handouts section of the web page. The link is named:

Classical large sample confidence intervals (R simulation)

One way to execute this directly is to copy the link from the
web page and paste it between the quotes in the command
source("")
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Example - R Simulations

There is an R program that simulates the behavior of
classical large sample confidence intervals from the notes
and handouts section of the web page. The link is named:

Classical large sample confidence intervals (R simulation)

One way to execute this directly is to copy the link from the
web page and paste it between the quotes in the command
source("")

You can also download it and open it from the file menu in R,
or run R in batch mode and specify it as input.
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