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Interval Estimates
Measures of location and dispersion such as the sample
mean and standard deviation that consist of a single value
are called point estimators.

A shortcoming of this type of estimator is that it provides no
information about how precise or reliable the estimate is.

An alternative type of estimate is an interval estimate, also
known as a confidence interval.

An interval estimate consists of:

An interval or range of values (a, b)

A confidence level, usually expressed as a percentage,
representing the probability that the interval contains
the true population value.
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Interval Estimates
Like a point estimate, an interval estimate is based on a
random sample.
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Interval Estimates
Like a point estimate, an interval estimate is based on a
random sample.

Using the sample, an interval estimation procedure
constructs an interval that has a specified probability, say
.95, of containing the true population value. In this case, it
would be called a 95% confidence interval.
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Interval Estimates
Like a point estimate, an interval estimate is based on a
random sample.

Using the sample, an interval estimation procedure
constructs an interval that has a specified probability, say
.95, of containing the true population value. In this case, it
would be called a 95% confidence interval.

Because it is based on a random sample, the interval itself
is random.

This means that different samples from the same
population are likely to produce different intervals.
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Interval Estimates
Like a point estimate, an interval estimate is based on a
random sample.

Using the sample, an interval estimation procedure
constructs an interval that has a specified probability, say
.95, of containing the true population value. In this case, it
would be called a 95% confidence interval.

Because it is based on a random sample, the interval itself
is random.

This means that different samples from the same
population are likely to produce different intervals.

The intervals are constructed in such a way that for each
one, the probability that it contains the true population value
is (in this example) .95
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Interval Estimates
What follows is a procedure for using a random sample
X1, X2, . . . , Xn to construct a confidence interval for the
(unknown) mean of a normal population with known
standard deviation σ.
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Interval Estimates
What follows is a procedure for using a random sample
X1, X2, . . . , Xn to construct a confidence interval for the
(unknown) mean of a normal population with known
standard deviation σ.

It might seem unusual to know the standard deviation but
not the mean of an underlying normal population, but this
situation arises in the case of standardized measures such
as IQ and SAT.
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What follows is a procedure for using a random sample
X1, X2, . . . , Xn to construct a confidence interval for the
(unknown) mean of a normal population with known
standard deviation σ.

It might seem unusual to know the standard deviation but
not the mean of an underlying normal population, but this
situation arises in the case of standardized measures such
as IQ and SAT.

The theory underlying the construction of confidence
intervals from a random sample guarantees that the
resulting interval will contain the true population mean with
a certain probability or level of confidence, regardless of
what the actual population value µ is.
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Interval Estimates
What follows is a procedure for using a random sample
X1, X2, . . . , Xn to construct a confidence interval for the
(unknown) mean of a normal population with known
standard deviation σ.

It might seem unusual to know the standard deviation but
not the mean of an underlying normal population, but this
situation arises in the case of standardized measures such
as IQ and SAT.

The theory underlying the construction of confidence
intervals from a random sample guarantees that the
resulting interval will contain the true population mean with
a certain probability or level of confidence, regardless of
what the actual population value µ is.
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Interval Estimates
The theory leads to different procedures for different
statistics. A confidence interval for the standard deviation of
a normal population is not constructed the same way as a
confidence interval for the mean.
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Interval Estimates
The theory leads to different procedures for different
statistics. A confidence interval for the standard deviation of
a normal population is not constructed the same way as a
confidence interval for the mean.

Although the computational procedure will be different, a
confidence interval for another population value such as the
standard deviation still has the basic property that it
contains the true population value σ with a certain
probability or level of confidence.
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Interval Estimates
The theory leads to different procedures for different
statistics. A confidence interval for the standard deviation of
a normal population is not constructed the same way as a
confidence interval for the mean.

Although the computational procedure will be different, a
confidence interval for another population value such as the
standard deviation still has the basic property that it
contains the true population value σ with a certain
probability or level of confidence.

We will consider only confidence intervals for the population
mean.
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The Normal CDF
As noted previously, the Cumulative Distribution Function
F (x) of the normal distribution cannot be expressed in a
simple formula.
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With statistical software readily available, our main tool
evaluating the normal CDF F (x) will be a computer or
calculator.
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The Normal CDF
As noted previously, the Cumulative Distribution Function
F (x) of the normal distribution cannot be expressed in a
simple formula.

With statistical software readily available, our main tool
evaluating the normal CDF F (x) will be a computer or
calculator.

The actual code for producing the value of F (x) is:

= NORMDIST (x, µ, σ, TRUE) for a spreadsheet

pnorm(x, µ, σ) for R
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The Normal CDF
As noted previously, the Cumulative Distribution Function
F (x) of the normal distribution cannot be expressed in a
simple formula.

With statistical software readily available, our main tool
evaluating the normal CDF F (x) will be a computer or
calculator.

The actual code for producing the value of F (x) is:

= NORMDIST (x, µ, σ, TRUE) for a spreadsheet

pnorm(x, µ, σ) for R

Either method produces F (x) = P (X ≤ x) for a N(µ, σ)
distribution.
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The Normal CDF Inverse
Sometimes we have the opposite problem: given a
probability value p, we want to find x such that

P (X ≤ x) = p when X ∼ N(µ, σ)
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The Normal CDF Inverse
Sometimes we have the opposite problem: given a
probability value p, we want to find x such that

P (X ≤ x) = p when X ∼ N(µ, σ)

We could try different values of x with
NORMDIST (x, µ, σ, TRUE) or pnorm(x, µ, σ) but this would
be time consuming.
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The Normal CDF Inverse
Sometimes we have the opposite problem: given a
probability value p, we want to find x such that

P (X ≤ x) = p when X ∼ N(µ, σ)

We could try different values of x with
NORMDIST (x, µ, σ, TRUE) or pnorm(x, µ, σ) but this would
be time consuming.

A better way is to use the inverse CDF functions:

= NORMINV (p, µ, σ) for a spreadsheet

qnorm(p, µ, σ) for R
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The Normal CDF Inverse
Sometimes we have the opposite problem: given a
probability value p, we want to find x such that

P (X ≤ x) = p when X ∼ N(µ, σ)

We could try different values of x with
NORMDIST (x, µ, σ, TRUE) or pnorm(x, µ, σ) but this would
be time consuming.

A better way is to use the inverse CDF functions:

= NORMINV (p, µ, σ) for a spreadsheet

qnorm(p, µ, σ) for R

Either method produces x with the property that
F (x) = P (X ≤ x) = p for a N(µ, σ) distribution.

Interval Estimation – p. 6/22



Example
Find the value x with the property that a normal random
variable with mean µ = 100 and standard deviation σ = 15
takes a value less than or equal to x with probability
p = 0.05.

Interval Estimation – p. 7/22



Example
Find the value x with the property that a normal random
variable with mean µ = 100 and standard deviation σ = 15
takes a value less than or equal to x with probability
p = 0.05.

Using either of the inverse CDF functions:

x = NORMINV (.05, 100, 15) for a spreadsheet

x = qnorm(.05, 100, 15) for R

we find that x = 75.33.
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Example
Find the value x with the property that a normal random
variable with mean µ = 100 and standard deviation σ = 15
takes a value less than or equal to x with probability
p = 0.05.

Using either of the inverse CDF functions:

x = NORMINV (.05, 100, 15) for a spreadsheet

x = qnorm(.05, 100, 15) for R

we find that x = 75.33.

As a check, entering = NORMDIST (75.33, 100, 15) or
pnorm(75.33, 100, 15) should produce p = .05.
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Example
Find the value x with the property that a normal random
variable with mean µ = 500 and standard deviation σ = 100
takes a value less than or equal to x with probability
p = 0.98 (i.e., find the 98th percentile SAT score).
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Example
Find the value x with the property that a normal random
variable with mean µ = 500 and standard deviation σ = 100
takes a value less than or equal to x with probability
p = 0.98 (i.e., find the 98th percentile SAT score).

Using either of the inverse CDF functions:

x = NORMINV (.98, 500, 100) for a spreadsheet

x = qnorm(.98, 500, 100) for R

we find that x = 705.
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Example
Find the value x with the property that a normal random
variable with mean µ = 500 and standard deviation σ = 100
takes a value less than or equal to x with probability
p = 0.98 (i.e., find the 98th percentile SAT score).

Using either of the inverse CDF functions:

x = NORMINV (.98, 500, 100) for a spreadsheet

x = qnorm(.98, 500, 100) for R

we find that x = 705.

As a check, entering = NORMDIST (705, 500, 100) or
pnorm(705, 500, 100) should produce p = .98.
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Confidence Intervals for Means
Suppose we have a sample X1, X2, . . . , Xn from a normal
population with unknown mean µ and known standard
deviation σ.

Now we present a procedure for constructing an interval
estimate (L,U) for the (unknown) mean µ.
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Confidence Intervals for Means
Suppose we have a sample X1, X2, . . . , Xn from a normal
population with unknown mean µ and known standard
deviation σ.

Now we present a procedure for constructing an interval
estimate (L,U) for the (unknown) mean µ.

Suppose we want an interval (L,U) that contains the true
value µ with probability 1 − α.
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Confidence Intervals for Means
Suppose we have a sample X1, X2, . . . , Xn from a normal
population with unknown mean µ and known standard
deviation σ.

Now we present a procedure for constructing an interval
estimate (L,U) for the (unknown) mean µ.

Suppose we want an interval (L,U) that contains the true
value µ with probability 1 − α.

The correct interpretation of this is that if we took a large
number of samples and constructed an interval (L,U) for
each sample, we would get many different intervals, and on
average 100(1 − α) percent of them would contain µ, that is,

P (L ≤ µ ≤ U) = 1 − α
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Constructing the Confidence Interval
First we choose the level of confidence we want. Let’s say
this is 95%. Solve the following equation to get α:

100(1 − α) = 95 or 1 −
95

100
= .05 = α
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Constructing the Confidence Interval
First we choose the level of confidence we want. Let’s say
this is 95%. Solve the following equation to get α:

100(1 − α) = 95 or 1 −
95

100
= .05 = α

Now we compute the endpoints (L,U) of the 100(1 − α)%
confidence interval using:

The α value derived from the level of confidence

x, the sample mean

σ the known population standard deviation.

The sample size n
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Constructing the Confidence Interval
Recall that in this situation, the sample mean has a normal
distribution:

x ∼ N

(

µ,
σ
√

n

)
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Constructing the Confidence Interval
Recall that in this situation, the sample mean has a normal
distribution:

x ∼ N

(

µ,
σ
√

n

)

Now we compute the endpoints (L,U) of the 100(1 − α)%
confidence interval using:

L = NORMINV (α/2, x, σ/
√

n) or
L = qnorm(α/2, x, σ/

√
n)

U = NORMINV (1 − α/2, x, σ/
√

n) or
U = qnorm(1 − α/2, x, σ/

√
n)
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Constructing the Confidence Interval
Recall that in this situation, the sample mean has a normal
distribution:

x ∼ N

(

µ,
σ
√

n

)

Now we compute the endpoints (L,U) of the 100(1 − α)%
confidence interval using:

L = NORMINV (α/2, x, σ/
√

n) or
L = qnorm(α/2, x, σ/

√
n)

U = NORMINV (1 − α/2, x, σ/
√

n) or
U = qnorm(1 − α/2, x, σ/

√
n)

Notice that once the values of α, n and σ are determined, L
and U depend only on x.
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Example
A random sample of 100 students in a large school district
are given the SAT. If the average score is 507, construct a
95% confidence interval for the mean SAT score in this
school district.
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Example
A random sample of 100 students in a large school district
are given the SAT. If the average score is 507, construct a
95% confidence interval for the mean SAT score in this
school district.

In this case, α = .05, n = 100, x = 507, and we assume that
σ is known to be 100 because the SAT is standardized to
have this value.
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Example
A random sample of 100 students in a large school district
are given the SAT. If the average score is 507, construct a
95% confidence interval for the mean SAT score in this
school district.

In this case, α = .05, n = 100, x = 507, and we assume that
σ is known to be 100 because the SAT is standardized to
have this value.

Then:
L = NORMINV (.025, 507, 10)

or L = qnorm(.025, 507, 10) = 487.4

and
U = NORMINV (.975, 507, 10)

or L = qnorm(.975, 507, 10) = 526.6
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Example
A random sample of 100 students in a large school district
are given the SAT. If the average score is 507, construct a
99% confidence interval for the mean SAT score in this
school district.
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Example
A random sample of 100 students in a large school district
are given the SAT. If the average score is 507, construct a
99% confidence interval for the mean SAT score in this
school district.

In this case, α = .01, n = 100, x = 507, and we assume that
σ is known to be 100 because the SAT is standardized to
have this value.
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Example
A random sample of 100 students in a large school district
are given the SAT. If the average score is 507, construct a
99% confidence interval for the mean SAT score in this
school district.

In this case, α = .01, n = 100, x = 507, and we assume that
σ is known to be 100 because the SAT is standardized to
have this value.

Then:
L = NORMINV (.005, 507, 10)

or L = qnorm(.005, 507, 10) = 481.24

and
U = NORMINV (.995, 507, 10)

or L = qnorm(.995, 507, 10) = 532.76
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Example
A random sample of 100 students in a large school district
are given the SAT. If the average score is 507, construct a
90% confidence interval for the mean SAT score in this
school district.
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Example
A random sample of 100 students in a large school district
are given the SAT. If the average score is 507, construct a
90% confidence interval for the mean SAT score in this
school district.

In this case, α = .10, n = 100, x = 507, and we assume that
σ is known to be 100 because the SAT is standardized to
have this value.
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Example
A random sample of 100 students in a large school district
are given the SAT. If the average score is 507, construct a
90% confidence interval for the mean SAT score in this
school district.

In this case, α = .10, n = 100, x = 507, and we assume that
σ is known to be 100 because the SAT is standardized to
have this value.

Then:
L = NORMINV (.05, 507, 10)

or L = qnorm(.005, 507, 10) = 490.55

and
U = NORMINV (.95, 507, 10)

or L = qnorm(.995, 507, 10) = 523.44
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Constructing the Confidence Interval
Generally the higher the level of confidence, the wider the
interval. For the preceding examples,
90% confidence (L,U)=(490.5,523.4)
95% confidence (L,U)=(487.4,526.6)
99% confidence (L,U)=(481.2,532.8)
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Constructing the Confidence Interval
Generally the higher the level of confidence, the wider the
interval. For the preceding examples,
90% confidence (L,U)=(490.5,523.4)
95% confidence (L,U)=(487.4,526.6)
99% confidence (L,U)=(481.2,532.8)

Notice that our confidence interval is interval centered at x
that would contain 100(1 − α) percent of the area under a
normal curve with mean x and standard deviation σ/

√
n.
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Monte Carlo Experiment
Now we will perform a simulation experiment in which we:

generate random samples of size 10 from a normal
population with known mean and standard deviation

construct 100(1 − α)% confidence intervals for each
sample

determine the proportion of these intervals that contain
the true population mean
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Monte Carlo Experiment
Now we will perform a simulation experiment in which we:

generate random samples of size 10 from a normal
population with known mean and standard deviation

construct 100(1 − α)% confidence intervals for each
sample

determine the proportion of these intervals that contain
the true population mean

Naturally, we expect that approximately 100(1 − α) percent
of the intervals will contain the true mean.
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Monte Carlo Experiment
Starting with a blank spreadsheet, enter the following
values:

Value Cell Address
ALPHA A1

0.05 B1
MU C1
10 D1

SIGMA E1
3 F1
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Monte Carlo Experiment
Starting with a blank spreadsheet, enter the following
values:

Value Cell Address
ALPHA A1

0.05 B1
MU C1
10 D1

SIGMA E1
3 F1

Now carefully enter the following in cell E3:

=NORMINV(RAND(),$D$1,$F$1)
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Monte Carlo Experiment
Starting with a blank spreadsheet, enter the following
values:

Value Cell Address
ALPHA A1

0.05 B1
MU C1
10 D1

SIGMA E1
3 F1

Now carefully enter the following in cell E3:

=NORMINV(RAND(),$D$1,$F$1)

This generates a N(µ, σ) random variable.
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Monte Carlo Experiment
Now replicate cell E3 horizontally 9 times, filling cells F3-N3.

This gives us a simulated random sample of size n = 10
from a N(µ, σ) population.
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Monte Carlo Experiment
Now replicate cell E3 horizontally 9 times, filling cells F3-N3.

This gives us a simulated random sample of size n = 10
from a N(µ, σ) population.

Now carefully enter the following in cell D3:

=AVERAGE(E3:N3)

This computes the sample mean x.
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Monte Carlo Experiment
Now carefully enter the following in cell B3:

=NORMINV($B$1/2,D3,$F$1/SQRT(10))

This gives us the lower limit of the 100(1 − α)% confidence
interval for µ.
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Monte Carlo Experiment
Now carefully enter the following in cell B3:

=NORMINV($B$1/2,D3,$F$1/SQRT(10))

This gives us the lower limit of the 100(1 − α)% confidence
interval for µ.

Now carefully enter the following in cell C3:

=NORMINV(1-$B$1/2,D3,$F$1/SQRT(10))

This gives us the upper limit of the 100(1 − α)% confidence
interval for µ.
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Monte Carlo Experiment
All that remains is to set up a counter. Enter the following in
cell A3:

=IF(AND(B3<$D$1,$D$1<C3),1,0)

This will code a value of one if the true population mean, in
cell D1, lies in the confidence interval, and a value of zero if
it does not.
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Monte Carlo Experiment
All that remains is to set up a counter. Enter the following in
cell A3:

=IF(AND(B3<$D$1,$D$1<C3),1,0)

This will code a value of one if the true population mean, in
cell D1, lies in the confidence interval, and a value of zero if
it does not.

Of course we need more than one trial. Replicate cells
A3 − N3 down to row 1003.
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Monte Carlo Experiment
Finally, set up a count of the number of ones in column A: In
cell A2, enter:

=SUM(A3:A1002)
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Monte Carlo Experiment
Finally, set up a count of the number of ones in column A: In
cell A2, enter:

=SUM(A3:A1002)

The result should be approximately 1000(1 − α)
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Monte Carlo Experiment
To recap, in this numerical experiment we:

Generated 1,000 random samples of size 10 from a
N(µ, σ) distribution

Computed the sample mean for each of them

Constructed a 100(1 − α)% confidence interval for µ
from each sample

Counted the number of confidence intervals that
actually contained µ
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Monte Carlo Experiment
To recap, in this numerical experiment we:

Generated 1,000 random samples of size 10 from a
N(µ, σ) distribution

Computed the sample mean for each of them

Constructed a 100(1 − α)% confidence interval for µ
from each sample

Counted the number of confidence intervals that
actually contained µ

You can experiment with the spreadsheet by replicating the
experiment (F9), and changing values of α, µ, and σ.
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