
Hypergeometric Random Variables
Now we consider a probability distribution that can be
considered to arise from repeated Bernoulli trials where the
probability of success is not constant.
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Hypergeometric Random Variables
Now we consider a probability distribution that can be
considered to arise from repeated Bernoulli trials where the
probability of success is not constant.

The simplest way to describe this distribution is the urn
experiment

An urn initially contains a certain number r of red chips and
a certain number b of black chips.

The experiment consists of drawing some predetermined
number n of chips from the urn, without replacement, and
noting the number of red and black chips.

The random variable associated with the experiment is
usually defined to be the number of red chips drawn.
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Hypergeometric Random Variables
Had we replaced the chip after each draw, a bit of thought
should convince you that the number of red chips drawn
should have a binomial distribution, because we conduct a
fixed number n of Bernoulli trials each with probability of
success

p =
r

r + b
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Had we replaced the chip after each draw, a bit of thought
should convince you that the number of red chips drawn
should have a binomial distribution, because we conduct a
fixed number n of Bernoulli trials each with probability of
success

p =
r

r + b

The slight modification in the experiment that produces the
hypergeometric distribution instead of the binomial is that
we do not replace each chip after it is drawn, but conduct
the next draw from whatever chips are left in the urn.
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Hypergeometric Random Variables
Had we replaced the chip after each draw, a bit of thought
should convince you that the number of red chips drawn
should have a binomial distribution, because we conduct a
fixed number n of Bernoulli trials each with probability of
success

p =
r

r + b

The slight modification in the experiment that produces the
hypergeometric distribution instead of the binomial is that
we do not replace each chip after it is drawn, but conduct
the next draw from whatever chips are left in the urn.

Because we do not replace chips as we draw them, the
probability of drawing a red chip does not remain the same
on successive draws.
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Hypergeometric Random Variables
As it turns out, the probability of a red chip on the second
draw depends on the outcome of the first draw.

If the first draw results in a red chip, the probability of a red
chip on the second draw is:

p =
r − 1

r + b − 1
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Hypergeometric Random Variables
As it turns out, the probability of a red chip on the second
draw depends on the outcome of the first draw.

If the first draw results in a red chip, the probability of a red
chip on the second draw is:

p =
r − 1

r + b − 1

However, if the first chip drawn is black, the probability of a
red chip on the second draw is:

p =
r

r + b − 1
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Hypergeometric Random Variables
Because we violate both the assumption of independence
of successive trials, and the assumption of constant
probability of success, this is not a binomial experiment.

Discrete Distributions - Continued – p. 4/8



Hypergeometric Random Variables
Because we violate both the assumption of independence
of successive trials, and the assumption of constant
probability of success, this is not a binomial experiment.

The distribution that results from this experiment is called
the hypergeometric distribution.
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Hypergeometric Random Variables
The author’s notation for the hypergeometric distribution is:

P (X = x) = h(x; n,M,N)

where, in the parlance of the urn experiment,

N represents the number of chips in the urn at the start

M represents the number of red chips

n represents the number of chips drawn (and not
replaced) during the experiment

x represents the number of red chips drawn
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Hypergeometric Random Variables
The author’s notation for the hypergeometric distribution is:

P (X = x) = h(x; n,M,N)

where, in the parlance of the urn experiment,

N represents the number of chips in the urn at the start

M represents the number of red chips

n represents the number of chips drawn (and not
replaced) during the experiment

x represents the number of red chips drawn

As we see, the hypergeometric is a bit more complicated
than the others we have studied.
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Hypergeometric Random Variables
The probability mass function for the hypergeometric
distribution is:

P (X = x) = h(x; n,M,N) =

(

M

x

)(

N−M

n−x

)

(

N

n

)

with some restrictions on the values that x and n can take:

x cannot be smaller than zero

x cannot be larger than M , the initial number of red
chips

x cannot be larger than n, the number of chips drawn

n cannot be larger than N , the number of chips initially
in the urn
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Hypergeometric Random Variables
Because of the complicated nature of the probability mass
function, there is no simple formula for the cumulative
distribution function, defined by F (x) = P (X ≤ x).
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Hypergeometric Random Variables
Because of the complicated nature of the probability mass
function, there is no simple formula for the cumulative
distribution function, defined by F (x) = P (X ≤ x).

With a bit of tedious algebra, one can show that the
expected value and variance of a hypergeometric random
variable are:

E(X) = n ·
M

N
and V (X) =

(

N − n

N − 1

)

· n ·
M

N
·

(

1 −
M

N

)
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Because of the complicated nature of the probability mass
function, there is no simple formula for the cumulative
distribution function, defined by F (x) = P (X ≤ x).

With a bit of tedious algebra, one can show that the
expected value and variance of a hypergeometric random
variable are:

E(X) = n ·
M

N
and V (X) =

(

N − n

N − 1

)

· n ·
M

N
·

(

1 −
M

N

)

Note that if we let p = M/N and we let N become large
while p remains fixed, we end up with the mean and
variance of a binomial random variable.
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Hypergeometric Random Variables
Once again, there is not universal agreement on the
h(x; n,M,N) notation.
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Hypergeometric Random Variables
Once again, there is not universal agreement on the
h(x; n,M,N) notation.

The R implementation of the hypergeometric distribution as
expected is dhyper, but the parameters are slightly
different.
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Hypergeometric Random Variables
Once again, there is not universal agreement on the
h(x; n,M,N) notation.

The R implementation of the hypergeometric distribution as
expected is dhyper, but the parameters are slightly
different.

In terms of the author’s notation,

P (X = x) = h(x; n,M,N) = dhyper(x,M,N-M,n)
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Hypergeometric Random Variables
Example: Keno

In the lottery game called Keno, 20 of the 80 numbers from
1 to 80 are randomly selected. Prior to the selection,
players fill out a card specifying up to 10 numbers they think
will be chosen.
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Hypergeometric Random Variables
Example: Keno

In the lottery game called Keno, 20 of the 80 numbers from
1 to 80 are randomly selected. Prior to the selection,
players fill out a card specifying up to 10 numbers they think
will be chosen.

If the player chooses 10 numbers, think of the 80 numbers
as divided into 10 "winning" numbers, and 70 "losing"
numbers.
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as divided into 10 "winning" numbers, and 70 "losing"
numbers.

The experiment is then hypergeometric with 20 numbers
chosen without replacement.
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Hypergeometric Random Variables
Example: Keno

In the lottery game called Keno, 20 of the 80 numbers from
1 to 80 are randomly selected. Prior to the selection,
players fill out a card specifying up to 10 numbers they think
will be chosen.

If the player chooses 10 numbers, think of the 80 numbers
as divided into 10 "winning" numbers, and 70 "losing"
numbers.

The experiment is then hypergeometric with 20 numbers
chosen without replacement.

The probablility of getting 5 hits out of 10 numbers chosen
is:

P (X = 5) = h(5; 20, 10, 80) = dhyper(5,10,80-10,20) = .0514
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Hypergeometric Random Variables
The hypergeometric can also be visualized by a tree
diagram.
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