Expected Value of a Discrete Random

The expected value of a discrete random variable X is given by:

$$
E(X)=\sum_{\operatorname{Range}(X)} x \cdot p(x)
$$

where:

- Range (X) is the range of the random variable X, that is, the set of values X assumes.
- $p(x)$ is the probability mass function of X, $p(x)=P(X=x)$

Expected Value of a Bernoulli Random

The expected value of a Bernoulli random variable X with probability of success p is given by:

$$
E(X)=\sum_{x=0}^{1} x \cdot p(x)
$$

where:

- $p(1)=p$
- $p(0)=1-p$

SO

$$
E(X)=1 \cdot p(1)+0 \cdot p(0)=1 \cdot p+0 \cdot(1-p)
$$

So, the expected value of a Bernoulli random variable is the same as the probability of success.

Expected Value of a Binomial Random

The expected value of a binomial random variable X with n trials and probability of success p is given by:

$$
E(X)=\sum_{x=0}^{n} x \cdot\binom{n}{x} p^{x}(1-p)^{n-x}
$$

where:

- n is the number of trials in the binomial experiment
- p is the probability of success for each of the n Bernoulli trials in the binomial experiment.

Expected Value of a Binomial Random

With a bit of clever algebra it can be shown that

$$
E(X)=\sum_{x=0}^{n} x \cdot\binom{n}{x} p^{x}(1-p)^{n-x}=n p
$$

So, the expected value of a binomial random variable is the product of the number of trials and the probability of success.

Expected Value of a Geometric Randor

The expected value of a geometric random variable X with probability of success p is given by:

$$
E(X)=\sum_{x=0}^{\infty} x \cdot p(1-p)^{x}
$$

where p is the probability of success in the Bernoulli trials comprising the geometric experiment.

Expected Value of a Geometric Randor

The expected value of a geometric random variable X with probability of success p is given by:

$$
E(X)=\sum_{x=0}^{\infty} x \cdot p(1-p)^{x}
$$

where p is the probability of success in the Bernoulli trials comprising the geometric experiment.

From the results for sums of geometric series,

$$
E(X)=\sum_{x=0}^{\infty} x \cdot p(1-p)^{x}=\frac{1-p}{p}
$$

Expected Value of a Negative Binomial

The expected value of a negative binomial random variable X with r successes and probability of success p is given by:

$$
E(X)=\sum_{x=0}^{\infty} x \cdot\binom{x+r-1}{x} p^{r}(1-p)^{x}
$$

where p is the probability of success in the Bernoulli trials comprising the negative experiment and r is the number of successes required to stop.

Expected Value of a Negative Binomial

The expected value of a negative binomial random variable X with r successes and probability of success p is given by:

$$
E(X)=\sum_{x=0}^{\infty} x \cdot\binom{x+r-1}{x} p^{r}(1-p)^{x}
$$

where p is the probability of success in the Bernoulli trials comprising the negative experiment and r is the number of successes required to stop.

From the results for sums of power series,

$$
E(X)=\sum_{x=0}^{\infty} x \cdot\binom{x+r-1}{x} p^{r}(1-p)^{x}=\frac{r(1-p)}{p}
$$

Expected Value of a Poisson Random

The expected value of a Poisson random variable X with parameter λ is given by:

$$
E(X)=\sum_{x=0}^{\infty} x \cdot \frac{\lambda^{x} e^{-\lambda}}{x!}
$$

where λ is the (constant) value of $n p$ for the sequence binomial distributions whose limit is the Poisson.

Expected Value of a Poisson Random

The expected value of a Poisson random variable X with parameter λ is given by:

$$
E(X)=\sum_{x=0}^{\infty} x \cdot \frac{\lambda^{x} e^{-\lambda}}{x!}
$$

where λ is the (constant) value of $n p$ for the sequence binomial distributions whose limit is the Poisson.

From the results for sums of power series,

$$
E(X)=\sum_{x=0}^{\infty} x \cdot \frac{\lambda^{x} e^{-\lambda}}{x!}=\lambda
$$

