Expected Value of a Discrete Random

An important characteristic of a random variable X is its expected value, denoted by $E(X)$

Expected Value of a Discrete Random

An important characteristic of a random variable X is its expected value, denoted by $E(X)$

Recall that a random variable is a function that maps the sample space of an experiment into the real numbers:

$$
X: \Omega \rightarrow \mathbb{R}
$$

Expected Value of a Discrete Random

An important characteristic of a random variable X is its expected value, denoted by $E(X)$

Recall that a random variable is a function that maps the sample space of an experiment into the real numbers:

$$
X: \Omega \rightarrow \mathbb{R}
$$

The expected value of the random variable X is defined by:

$$
E(X)=\sum_{\operatorname{Range}(X)} x \cdot p(x)
$$

where $p(x)$ is the probability mass function.

Expected Value of a Discrete Random

Recall that the probability mass function $p(x)$ for a discrete random variable X is defined by:

$$
p(x)=P(X=x)
$$

Expected Value of a Discrete Random

Recall that the probability mass function $p(x)$ for a discrete random variable X is defined by:

$$
p(x)=P(X=x)
$$

For a discrete random variable, the probability mass function maps each value that the random variable can take into the probability that it takes that value.

Expected Value of a Discrete Random

Example: Suppose random variable X represents the number of successes in a binomial experiment with three trials and probability of success 0.4 on each trial. The probability mass function, in tabular form, is:

x	R code for $p(x)$	$p(x)$
0	dbinom $(0,3,0.4)$	0.216
1	dbinom $(1,3,0.4)$	0.432
2	dbinom $(2,3,0.4)$	0.288
3	dbinom $(3,3,0.4)$	0.064

Expected Value of a Discrete Random

The expected value of the random variable X is:
$E(X)=\sum_{k=0}^{3} k \cdot p(k)=0 \cdot 0.216+1 \cdot 0.432+2 \cdot 0.288+3 \cdot 0.064$

Expected Value of a Discrete Random

The expected value of the random variable X is:
$E(X)=\sum_{k=0}^{3} k \cdot p(k)=0 \cdot 0.216+1 \cdot 0.432+2 \cdot 0.288+3 \cdot 0.064$

If we compute the sum, we find that

$$
E(X)=1.2
$$

Expected Value of a Discrete Random

The expected value of the random variable X is:
$E(X)=\sum_{k=0}^{3} k \cdot p(k)=0 \cdot 0.216+1 \cdot 0.432+2 \cdot 0.288+3 \cdot 0.064$

If we compute the sum, we find that

$$
E(X)=1.2
$$

With a bit of algebra one can show that the expected value $E(X)$ of a binomial random variable representing an experiment with n trials and probability of success p is always:

$$
E(X)=n p
$$

Expected Value of a Discrete Random

When we say "The expected value of X is 1.2 ", we do not mean that we expect the experiment to produce 1.2 successes, which is clearly not possible.

Expected Value of a Discrete Random

When we say "The expected value of X is 1.2 ", we do not mean that we expect the experiment to produce 1.2 successes, which is clearly not possible.

An interpretation we can give is the following:
If we repeat the experiment many times, the average number of successes will be approach 1.2 as the number of replications of the experiment grows.

Expected Value of a Discrete Random

When we say "The expected value of X is 1.2 ", we do not mean that we expect the experiment to produce 1.2 successes, which is clearly not possible.

An interpretation we can give is the following:
If we repeat the experiment many times, the average number of successes will be approach 1.2 as the number of replications of the experiment grows.

This statement represents what is known as the law of large numbers

Expected Value of a Discrete Random

More precisely, if the random variable X represents a probability experiment, and we replicate the experiment n times, as n becomes large,

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow E(X) \quad \text { with probability } 1
$$

Expected Value of a Discrete Random

More precisely, if the random variable X represents a probability experiment, and we replicate the experiment n times, as n becomes large,

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow E(X) \quad \text { with probability } 1
$$

The law of large numbers is one of the most important ideas in probability and statistics.

Expected Value of a Discrete Random

More precisely, if the random variable X represents a probability experiment, and we replicate the experiment n times, as n becomes large,

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow E(X) \quad \text { with probability } 1
$$

The law of large numbers is one of the most important ideas in probability and statistics.

Essentially it says that, while we cannot hope to predict the outcome of a single experiment, if we can replicate the experiment many times, we can predict the long term average behavior with great certainty.

Expected Value of a Discrete Random

More precisely, if the random variable X represents a probability experiment, and we replicate the experiment n times, as n becomes large,

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow E(X) \quad \text { with probability } 1
$$

The law of large numbers is one of the most important ideas in probability and statistics.

Essentially it says that, while we cannot hope to predict the outcome of a single experiment, if we can replicate the experiment many times, we can predict the long term average behavior with great certainty.

