The Bernoulli Distribution

The experiment has two outcomes, success and failure.

$$
\Omega=\{S, F\} \quad X: \Omega \rightarrow\{1,0\}
$$

The Bernoulli Distribution

The experiment has two outcomes, success and failure.

$$
\Omega=\{S, F\} \quad X: \Omega \rightarrow\{1,0\}
$$

Parameters: p represents the probability of success.

The Bernoulli Distribution

The experiment has two outcomes, success and failure.

$$
\Omega=\{S, F\} \quad X: \Omega \rightarrow\{1,0\}
$$

Parameters: p represents the probability of success.
Probability mass function:

$$
p(x)=\left\{\begin{array}{lll}
p & \text { if } & x=1 \\
1-p & \text { if } & x=0
\end{array}\right.
$$

The Bernoulli Distribution

The experiment has two outcomes, success and failure.

$$
\Omega=\{S, F\} \quad X: \Omega \rightarrow\{1,0\}
$$

Parameters: p represents the probability of success.
Probability mass function:

$$
p(x)=\left\{\begin{array}{lll}
p & \text { if } & x=1 \\
1-p & \text { if } & x=0
\end{array}\right.
$$

Expected value and variance:

$$
E(X)=p \quad V(X)=p(1-p)
$$

The Binomial Distribution

n Bernoulli trials with common parameter p
$\Omega=\{$ all sequences of n letters, each S or F$\}$
$X: \Omega \rightarrow\{0,1, \ldots, n\} \quad X$ is the number of successes

The Binomial Distribution

n Bernoulli trials with common parameter p
$\Omega=\{$ all sequences of n letters, each S or F$\}$
$X: \Omega \rightarrow\{0,1, \ldots, n\} \quad X$ is the number of successes
Parameters: n is the number of trials, p is the probability of success.

The Binomial Distribution

n Bernoulli trials with common parameter p

$$
\Omega=\{\text { all sequences of } \mathrm{n} \text { letters, each } \mathrm{S} \text { or } \mathrm{F}\}
$$

$X: \Omega \rightarrow\{0,1, \ldots, n\} \quad X$ is the number of successes
Parameters: n is the number of trials, p is the probability of success.
Probability mass function:

$$
p(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, \quad x=0,1,2, \ldots, n
$$

The Binomial Distribution

n Bernoulli trials with common parameter p

$$
\Omega=\{\text { all sequences of } \mathrm{n} \text { letters, each } \mathrm{S} \text { or } \mathrm{F}\}
$$

$X: \Omega \rightarrow\{0,1, \ldots, n\} \quad X$ is the number of successes
Parameters: n is the number of trials, p is the probability of success.
Probability mass function:

$$
p(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, \quad x=0,1,2, \ldots, n
$$

Expected value and variance:

$$
E(X)=n p \quad V(X)=n p(1-p)
$$

The Geometric Distribution

Conduct Bernoulli trials until the first success.

$$
\Omega=\{\text { S,FS,FFS,FFFS,FFFFS, }, \ldots\}
$$

$X: \Omega \rightarrow\{0,1, \ldots, n\} \quad X$ is the number of failures

The Geometric Distribution

Conduct Bernoulli trials until the first success.

$$
\Omega=\{\text { S,FS,FFS,FFFS,FFFFSS, ... }\}
$$

$X: \Omega \rightarrow\{0,1, \ldots, n\} \quad X$ is the number of failures
Parameters: p is the probability of success.

The Geometric Distribution

Conduct Bernoulli trials until the first success.

$$
\Omega=\{\text { S,FS,FFS,FFFS,FFFFSS, ... }\}
$$

$$
X: \Omega \rightarrow\{0,1, \ldots, n\} \quad X \text { is the number of failures }
$$

Parameters: p is the probability of success.
Probability mass function:

$$
p(x)=p(1-p)^{x}, \quad x=0,1,2, \ldots
$$

The Geometric Distribution

Conduct Bernoulli trials until the first success.

$$
\begin{gathered}
\Omega=\{\mathrm{S}, \mathrm{FS}, \mathrm{FFS}, \mathrm{FFFS}, \mathrm{FFFFS}, \ldots\} \\
X: \Omega \rightarrow\{0,1, \ldots, n\} \quad X \text { is the number of failures }
\end{gathered}
$$

Parameters: p is the probability of success.
Probability mass function:

$$
p(x)=p(1-p)^{x}, \quad x=0,1,2, \ldots
$$

Expected value and variance:

$$
E(X)=\frac{1-p}{p} \quad V(X)=\frac{1-p}{p^{2}}
$$

The Negative Binomial Distribution

Conduct Bernoulli trials until the $r^{t h}$ success.
$\Omega=$ sequences with r S's ending with an S
$X: \Omega \rightarrow\{0,1, \ldots\} \quad X$ is the number of failures

The Negative Binomial Distribution

Conduct Bernoulli trials until the $r^{t h}$ success.
$\Omega=$ sequences with r S's ending with an S
$X: \Omega \rightarrow\{0,1, \ldots\} \quad X$ is the number of failures
Parameters: p is the probability of success, r is the number of successes needed to stop.

The Negative Binomial Distribution

Conduct Bernoulli trials until the $r^{t h}$ success.
$\Omega=$ sequences with r S's ending with an S
$X: \Omega \rightarrow\{0,1, \ldots\} \quad X$ is the number of failures
Parameters: p is the probability of success, r is the number of successes needed to stop.
Probability mass function:

$$
p(x)=\binom{x+r-1}{x} p^{r}(1-p)^{x}, \quad x=0,1,2, \ldots
$$

The Negative Binomial Distribution

Conduct Bernoulli trials until the $r^{t h}$ success.
$\Omega=$ sequences with r S's ending with an S
$X: \Omega \rightarrow\{0,1, \ldots\} \quad X$ is the number of failures
Parameters: p is the probability of success, r is the number of successes needed to stop.
Probability mass function:

$$
p(x)=\binom{x+r-1}{x} p^{r}(1-p)^{x}, \quad x=0,1,2, \ldots
$$

Expected value and variance:

$$
E(X)=\frac{r(1-p)}{p} \quad V(X)=\frac{r(1-p)}{p^{2}}
$$

The Poisson Distribution

Limiting form of binomial distribution.

$$
\begin{gathered}
\Omega=\{0,1,2,3, \ldots\} \\
X: \Omega \rightarrow\{0,1,2,3, \ldots\}
\end{gathered}
$$

The Poisson Distribution

Limiting form of binomial distribution.

$$
\begin{gathered}
\Omega=\{0,1,2,3, \ldots\} \\
X: \Omega \rightarrow\{0,1,2,3, \ldots\}
\end{gathered}
$$

Parameters: λ (fixed value of $n p$ in limiting binomial distribution)

The Poisson Distribution

Limiting form of binomial distribution.

$$
\begin{gathered}
\Omega=\{0,1,2,3, \ldots\} \\
X: \Omega \rightarrow\{0,1,2,3, \ldots\}
\end{gathered}
$$

Parameters: λ (fixed value of $n p$ in limiting binomial distribution)
Probability mass function:

$$
p(x)=\frac{\lambda^{x} e^{-\lambda}}{x!}, \quad x=0,1,2,3, \ldots
$$

The Poisson Distribution

Limiting form of binomial distribution.

$$
\begin{gathered}
\Omega=\{0,1,2,3, \ldots\} \\
X: \Omega \rightarrow\{0,1,2,3, \ldots\}
\end{gathered}
$$

Parameters: λ (fixed value of $n p$ in limiting binomial distribution)
Probability mass function:

$$
p(x)=\frac{\lambda^{x} e^{-\lambda}}{x!}, \quad x=0,1,2,3, \ldots
$$

Expected value and variance:

$$
E(X)=\lambda \quad V(X)=\lambda
$$

