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of success p (p is the same for all of the trials)

The following discrete probability distributions arise from
this model:

If the number of trials n is fixed in advance, the number of
successes X has a binomial distribution

If trials continue indefinitely until the first success is
obtained, the number of failures obtained X has a
geometric distribution.
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Discrete Distributions
Now consider a series of independent experiments, each of
which produces a Bernoulli random variable with probability
of success p (p is the same for all of the trials)

The following discrete probability distributions arise from
this model:

If the number of trials n is fixed in advance, the number of
successes X has a binomial distribution

If trials continue indefinitely until the first success is
obtained, the number of failures obtained X has a
geometric distribution.

If trials continue indefinitely until the rth success is
obtained, the number of failures obtained X has a negative
binomial distribution.
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The Negative Binomial Distribution
The negative binomial experiment consists of:

independent Bernoulli trials are performed until r

successes are obtained

The random variable X is the number of failures that
occur before the rth success.

The probability of success p is the same for all trials
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The Negative Binomial Distribution
The probability mass function is:

f(x) = nb(x; r, p) =

(

x + r − 1

r − 1

)

pr(1 − p)x, x = 0, 1, 2, 3, . . .
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The Negative Binomial Distribution
The probability mass function is:

f(x) = nb(x; r, p) =

(

x + r − 1

r − 1

)

pr(1 − p)x, x = 0, 1, 2, 3, . . .

E(X) =
r(1 − p)

p
V (X) =

r(1 − p)

p2
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The Negative Binomial Distribution
The probability mass function is:

f(x) = nb(x; r, p) =

(

x + r − 1

r − 1

)

pr(1 − p)x, x = 0, 1, 2, 3, . . .

E(X) =
r(1 − p)

p
V (X) =

r(1 − p)

p2

Computation:
Value R Spreadsheet
P (X = x) dnbinom(x, n, p) = NEGBINOMDIST (x, r, p)

P (X ≤ x) pnbinom(x, n, p)
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The Negative Binomial Distribution
Note that the expected value and variance for the negative
binomial distribution:

E(X) =
r(1 − p)

p
V (X) =

r(1 − p)

p2

is r times the expected value and variance of the geometric
distribution:

E(X) =
1 − p

p
V (X) =

1 − p

p2
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The Negative Binomial Distribution
Note that the expected value and variance for the negative
binomial distribution:

E(X) =
r(1 − p)

p
V (X) =

r(1 − p)

p2

is r times the expected value and variance of the geometric
distribution:

E(X) =
1 − p

p
V (X) =

1 − p

p2

This reflects the fact that the negative binomial can be
viewed as the sum of r independent geometric experiments:

Conduct Bernoulli trials until the first success, and repeat
this r times.
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The Negative Binomial Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
negative binomial experiment with r = 3 and a probability of
success p = 0.4 at each trial:

x<-rnbinom(1000000,3,0.4)
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The Negative Binomial Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
negative binomial experiment with r = 3 and a probability of
success p = 0.4 at each trial:

x<-rnbinom(1000000,3,0.4)

Now plot a histogram of the results:

hist(x)

To get a table of the results enter

table(x)
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The Negative Binomial Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
negative binomial experiment with r = 3 and a probability of
success p = 0.4 at each trial:

x<-rnbinom(1000000,3,0.4)

Now plot a histogram of the results:

hist(x)

To get a table of the results enter

table(x)

The results through X = 6 should look something like:
0 1 2 3 4 5

63784 115545 138570 138259 124481 103801 83493
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The Negative Binomial Distribution

0 1 2 3 4 5
63784 115545 138570 138259 124481 103801 83493

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dnbinom(0,3,0.4)
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The Negative Binomial Distribution

0 1 2 3 4 5
63784 115545 138570 138259 124481 103801 83493

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dnbinom(0,3,0.4)

The result should be something like

[1] 0.064
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The Negative Binomial Distribution

0 1 2 3 4 5
63784 115545 138570 138259 124481 103801 83493

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dnbinom(0,3,0.4)

The result should be something like

[1] 0.064

To get the probability that X = 1 enter

dnbinom(1,3,0.4)
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The Negative Binomial Distribution

0 1 2 3 4 5
63784 115545 138570 138259 124481 103801 83493

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dnbinom(0,3,0.4)

The result should be something like

[1] 0.064

To get the probability that X = 1 enter

dnbinom(1,3,0.4)

This time the results should look something like:

[1] 0.1152
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The Negative Binomial Distribution

0 1 2 3 4 5
63784 115545 138570 138259 124481 103801 83493

Next compute the probability that X = 2:

dnbinom(2,3,0.4)
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The Negative Binomial Distribution

0 1 2 3 4 5
63784 115545 138570 138259 124481 103801 83493

Next compute the probability that X = 2:

dnbinom(2,3,0.4)

The result should be something like

[1] 0.13824
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The Negative Binomial Distribution

0 1 2 3 4 5
63784 115545 138570 138259 124481 103801 83493

Next compute the probability that X = 2:

dnbinom(2,3,0.4)

The result should be something like

[1] 0.13824

To get the probability that X = 5 enter

dnbinom(5,3,0.4)
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The Negative Binomial Distribution

0 1 2 3 4 5
63784 115545 138570 138259 124481 103801 83493

Next compute the probability that X = 2:

dnbinom(2,3,0.4)

The result should be something like

[1] 0.13824

To get the probability that X = 5 enter

dnbinom(5,3,0.4)

This time the results should look something like:

[1] 0.10451
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The Negative Binomial Distribution
The expected value E(X) in this case is:

E(X) =
r(1 − p)

p
=

3(.6)

.4
= 4.5
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The Negative Binomial Distribution
The expected value E(X) in this case is:

E(X) =
r(1 − p)

p
=

3(.6)

.4
= 4.5

To compute the sample mean x, enter

mean(x)
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The Negative Binomial Distribution
The expected value E(X) in this case is:

E(X) =
r(1 − p)

p
=

3(.6)

.4
= 4.5

To compute the sample mean x, enter

mean(x) The result should be something like

[1] 4.499121
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The Negative Binomial Distribution
The variance V (X) in this case is:

V (X) =
r(1 − p)

p2
=

3(.6)

.42
= 11.25
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The Negative Binomial Distribution
The variance V (X) in this case is:

V (X) =
r(1 − p)

p2
=

3(.6)

.42
= 11.25

To compute the sample variance s2, enter

var(x)
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The Negative Binomial Distribution
The variance V (X) in this case is:

V (X) =
r(1 − p)

p2
=

3(.6)

.42
= 11.25

To compute the sample variance s2, enter

var(x) The result should be something like

[1] 11.2477
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The Negative Binomial Distribution
A fair coin is tossed until the second heads comes up.

Find the probability that the second heads comes up on the
fifth toss (x=3).
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The Negative Binomial Distribution
A fair coin is tossed until the second heads comes up.

Find the probability that the second heads comes up on the
fifth toss (x=3).

Solution: 0.125
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The Negative Binomial Distribution
A fair coin is tossed until the second heads comes up.

Find the probability that the second heads comes up on the
fifth toss (x=3).

Solution: 0.125

dnbinom(3, 2, 0.5)
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The Geometric Distribution
A fair coin is tossed until the fourth heads comes up.

Find the probability that the fourth heads comes up on the
seventh toss or sooner x ≤ 3.
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The Geometric Distribution
A fair coin is tossed until the fourth heads comes up.

Find the probability that the fourth heads comes up on the
seventh toss or sooner x ≤ 3.

Solution: 0.5
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The Geometric Distribution
A fair coin is tossed until the fourth heads comes up.

Find the probability that the fourth heads comes up on the
seventh toss or sooner x ≤ 3.

Solution: 0.5

pnbinom(3, 4, 0.5)
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The Negative Binomial Distribution
A fair coin is tossed until the fifth heads comes up.

Find the probability that this takes more than 8 tosses
(x > 3)
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The Negative Binomial Distribution
A fair coin is tossed until the fifth heads comes up.

Find the probability that this takes more than 8 tosses
(x > 3)

Solution: 0.63672
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The Negative Binomial Distribution
A fair coin is tossed until the fifth heads comes up.

Find the probability that this takes more than 8 tosses
(x > 3)

Solution: 0.63672

1 − pnbinom(3, 5, 0.5)
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The Negative Binomial Distribution
A fair coin is tossed until the third heads comes up.

Find the probability that this takes 9 or more tosses (x > 5)
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The Negative Binomial Distribution
A fair coin is tossed until the third heads comes up.

Find the probability that this takes 9 or more tosses (x > 5)

Solution: 0.22656
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The Negative Binomial Distribution
A fair coin is tossed until the third heads comes up.

Find the probability that this takes 9 or more tosses (x > 5)

Solution: 0.22656

1− pnbinom(4, 3, 0.5) or = 1−GEOMDIST (7, 0.5, TRUE)

(Spreadsheet function is for GNUMERIC. EXCEL does not
have this function)
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The Negative Binomial Distribution
A baseball player has a .300 batting average.

Find the probability that their second hit in a game occurs
on the 5th time at bat. (x = 3)
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The Negative Binomial Distribution
A baseball player has a .300 batting average.

Find the probability that their second hit in a game occurs
on the 5th time at bat. (x = 3)

Solution: 0.12348
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The Negative Binomial Distribution
A baseball player has a .300 batting average.

Find the probability that their second hit in a game occurs
on the 5th time at bat. (x = 3)

Solution: 0.12348

dnbinom(3, 2, 0.3)
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