
Random Variables
A random variable is a real-valued function defined on
subsets of a sample space.
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Random Variables
A random variable is a real-valued function defined on
subsets of a sample space.

A Bernoulli random variable is a random variable whose
only possible values are 0 and 1.

In general we can consider a Bernoulli random variable to
be the result of an experiment with two outcomes, which for
convenience we will label "success" and "failure"
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Random Variables
A random variable is a real-valued function defined on
subsets of a sample space.

A Bernoulli random variable is a random variable whose
only possible values are 0 and 1.

In general we can consider a Bernoulli random variable to
be the result of an experiment with two outcomes, which for
convenience we will label "success" and "failure"

As before we define the Bernoulli random variable X by
agreeing to assign the value of 1 to X if the result of the
experiment is "success", and zero if the result is "failure":

X =

{

1 if the outcome of the experiment is "success"
0 if the outcome of the experiment is "failure"
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Bernoulli Random Variables
To be consistent with the Kolmogorov probability axioms the
probability of "success" must be a number p between zero
and one (inclusive), and the probability of "failure", which is
the compliment of "success", must be 1 − p.
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Bernoulli Random Variables
To be consistent with the Kolmogorov probability axioms the
probability of "success" must be a number p between zero
and one (inclusive), and the probability of "failure", which is
the compliment of "success", must be 1 − p.

This results in the following probability mass function f(x)
which we will refer to as the Bernoulli distribution:

f(x) = P (X = x) =

{

p if x = 1

1 − p if x = 0
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Bernoulli Random Variables
To be consistent with the Kolmogorov probability axioms the
probability of "success" must be a number p between zero
and one (inclusive), and the probability of "failure", which is
the compliment of "success", must be 1 − p.

This results in the following probability mass function f(x)
which we will refer to as the Bernoulli distribution:

f(x) = P (X = x) =

{

p if x = 1

1 − p if x = 0

Most of the discrete probability distributions we will now
consider are related to the Bernoulli distribution.
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Discrete Distributions
Now consider a series of independent experiments, each of
which produces a Bernoulli random variable with probability
of success p (p is the same for all of the trials)
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Discrete Distributions
Now consider a series of independent experiments, each of
which produces a Bernoulli random variable with probability
of success p (p is the same for all of the trials)

The following discrete probability distributions arise from
this model:

If the number of trials n is fixed in advance, the number of
successes X has a binomial distribution
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Discrete Distributions
Now consider a series of independent experiments, each of
which produces a Bernoulli random variable with probability
of success p (p is the same for all of the trials)

The following discrete probability distributions arise from
this model:

If the number of trials n is fixed in advance, the number of
successes X has a binomial distribution

If trials continue indefinitely until the first success is
obtained, the number of failures obtained X has a
geometric distribution.
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Discrete Distributions
Now consider a series of independent experiments, each of
which produces a Bernoulli random variable with probability
of success p (p is the same for all of the trials)

The following discrete probability distributions arise from
this model:

If the number of trials n is fixed in advance, the number of
successes X has a binomial distribution

If trials continue indefinitely until the first success is
obtained, the number of failures obtained X has a
geometric distribution.

If trials continue indefinitely until the rth success is
obtained, the number of failures obtained X has a negative
binomial distribution.
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Discrete Distributions
Note that the geometric distribution is a special case of the
negative binomial distribution, with r = 1.
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Discrete Distributions
Note that the geometric distribution is a special case of the
negative binomial distribution, with r = 1.

Unfortunately, different authors define the random variable
X in the negative binomial (and geometric) distribution in
different ways.
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Discrete Distributions
Note that the geometric distribution is a special case of the
negative binomial distribution, with r = 1.

Unfortunately, different authors define the random variable
X in the negative binomial (and geometric) distribution in
different ways.

However, the characterization as a sequence of Bernoulli
trials that ends at the rth success is common to all
definitions.
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Discrete Distributions
Note that the geometric distribution is a special case of the
negative binomial distribution, with r = 1.

Unfortunately, different authors define the random variable
X in the negative binomial (and geometric) distribution in
different ways.

However, the characterization as a sequence of Bernoulli
trials that ends at the rth success is common to all
definitions.

That said, you should be prepared to encounter a different
definition of X (and a different, but equivalent pmf)if you
look at a different text.
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Discrete Distributions
The other related distribution we will consider is the
Poisson distribution.
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Discrete Distributions
The other related distribution we will consider is the
Poisson distribution.

The Poisson is a limiting form of the binomial distribution
that you get if you let n become very large and the
probability of success p very small, but always keep np = λ
the same.
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Discrete Distributions
The other related distribution we will consider is the
Poisson distribution.

The Poisson is a limiting form of the binomial distribution
that you get if you let n become very large and the
probability of success p very small, but always keep np = λ
the same.

Another way to say this is that we take binomial random
variables with larger and larger n, but we keep the expected
number of successes np = λ the same for all of them.
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Discrete Distributions
The other related distribution we will consider is the
Poisson distribution.

The Poisson is a limiting form of the binomial distribution
that you get if you let n become very large and the
probability of success p very small, but always keep np = λ
the same.

Another way to say this is that we take binomial random
variables with larger and larger n, but we keep the expected
number of successes np = λ the same for all of them.

The limit of the distribution of such a sequence of random
variables as n → ∞ is a Poisson.
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The Binomial Distribution
The binomial experiment consists of:

n independent Bernoulli trials are performed

The random variable X is the sum of the results (i.e.,
the number of successes)

The probability of success p is the same for all trials

Discrete Distributions – p. 6/33



The Binomial Distribution
The binomial experiment consists of:

n independent Bernoulli trials are performed

The random variable X is the sum of the results (i.e.,
the number of successes)

The probability of success p is the same for all trials

The probability mass function (pmf) f(x) is:

f(x) = P (X = x) = b(x; n, p) =

(

n

x

)

px(1−p)n−x, x = 0, 1, 2, . . . ,
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The Binomial Distribution
It is not obvious, but if you sum the values of f(x) over all
values from zero to n, the sum is one.

n
∑

x=0

(

n

x

)

px(1 − p)n−x = 1
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The Binomial Distribution
It is not obvious, but if you sum the values of f(x) over all
values from zero to n, the sum is one.

n
∑

x=0

(

n

x

)

px(1 − p)n−x = 1

One way to make this clear is to consider the algebraic
identity

(x + y)n =
n

∑

i=0

(

n

i

)

xiyn−i
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The Binomial Distribution
If we let x be the probability of success p and y the
probability of failure 1 − p, on substitution we get

[p + (1 − p)]n = 1n = 1 =
n

∑

x=0

(

n

x

)

px(1 − p)n−x 0 ≤ p ≤ 1
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The Binomial Distribution
If we let x be the probability of success p and y the
probability of failure 1 − p, on substitution we get

[p + (1 − p)]n = 1n = 1 =
n

∑

x=0

(

n

x

)

px(1 − p)n−x 0 ≤ p ≤ 1

For any distribution, the cumulative distribution function
(cdf) F (x), is always defined by

F (x) = P (X ≤ x)
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The Binomial Distribution
If we let x be the probability of success p and y the
probability of failure 1 − p, on substitution we get

[p + (1 − p)]n = 1n = 1 =
n

∑

x=0

(

n

x

)

px(1 − p)n−x 0 ≤ p ≤ 1

For any distribution, the cumulative distribution function
(cdf) F (x), is always defined by

F (x) = P (X ≤ x)

For the binomial distribution, this gives:

F (x) =
x

∑

i=0

(

n

i

)

pi(1 − p)n−i
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The Binomial Distribution
For the binomial distribution, there is no simple expression
for F (x)
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The Binomial Distribution
For the binomial distribution, there is no simple expression
for F (x)

Values of F (x) for the binomial can be obtained from:

Tables (See table A.1 in the appendix)

Spreadsheets: = BINOMDIST (x, n, p, TRUE)

R: pbinom(x, n, p)
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The Binomial Distribution
For the binomial distribution, there is no simple expression
for F (x)

Values of F (x) for the binomial can be obtained from:

Tables (See table A.1 in the appendix)

Spreadsheets: = BINOMDIST (x, n, p, TRUE)

R: pbinom(x, n, p)

Example: A fair coin is tossed 10 times. What is the
probability that 7 or fewer heads turn up?
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The Binomial Distribution
For the binomial distribution, there is no simple expression
for F (x)

Values of F (x) for the binomial can be obtained from:

Tables (See table A.1 in the appendix)

Spreadsheets: = BINOMDIST (x, n, p, TRUE)

R: pbinom(x, n, p)

Example: A fair coin is tossed 10 times. What is the
probability that 7 or fewer heads turn up?

We want P (X ≤ 7), the probability that a binomial
experiment with 10 trials and probability of success 0.5
produces 7 or fewer "successes".
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The Binomial Distribution
If you are using a spreadsheet, enter:

= BINOMDIST (7, 10, 0.5, TRUE)
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The Binomial Distribution
If you are using a spreadsheet, enter:

= BINOMDIST (7, 10, 0.5, TRUE)

If you are using R, enter:

pdist(7, 10, 0.5)
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The Binomial Distribution
If you are using a spreadsheet, enter:

= BINOMDIST (7, 10, 0.5, TRUE)

If you are using R, enter:

pdist(7, 10, 0.5)

If you are using Table A.1, look under n = 10 on page 664,
in the row with x = 7 and column with p = 0.50
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The Binomial Distribution
If you are using a spreadsheet, enter:

= BINOMDIST (7, 10, 0.5, TRUE)

If you are using R, enter:

pdist(7, 10, 0.5)

If you are using Table A.1, look under n = 10 on page 664,
in the row with x = 7 and column with p = 0.50

All of these should give the value F (7) = .945
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The Binomial Distribution
If you are using a spreadsheet, enter:

= BINOMDIST (7, 10, 0.5, TRUE)

If you are using R, enter:

pdist(7, 10, 0.5)

If you are using Table A.1, look under n = 10 on page 664,
in the row with x = 7 and column with p = 0.50

All of these should give the value F (7) = .945

This means that if we toss a fair coin 10 times, the
probability of 7 or fewer heads is .945

Discrete Distributions – p. 10/33



The Binomial Distribution
If you are using a spreadsheet, enter:

= BINOMDIST (7, 10, 0.5, TRUE)

If you are using R, enter:

pdist(7, 10, 0.5)

If you are using Table A.1, look under n = 10 on page 664,
in the row with x = 7 and column with p = 0.50

All of these should give the value F (7) = .945

This means that if we toss a fair coin 10 times, the
probability of 7 or fewer heads is .945

If we repeat the experiment, tossing the coin 10 times, over
and over, the proportion of all of the replications of the
experiment that have 7 or fewer heads will approach .945.
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The Binomial Distribution
Example: Suppose every time the Red Sox play the
Yankees, the probability that the Red Sox win is 0.6.

If they play 7 games, what is the probability that the Red
Sox win 5 or fewer?
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The Binomial Distribution
Example: Suppose every time the Red Sox play the
Yankees, the probability that the Red Sox win is 0.6.

If they play 7 games, what is the probability that the Red
Sox win 5 or fewer?

If we assume that each game is an independent Bernoulli
trial with probability of "success" equal to 0.6, then the
number of games the Red Sox win will have a binomial
distribution with n = 7 and p = 0.6.
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The Binomial Distribution
We want to find the probability that the Red Sox win 5 or
fewer,

P (X ≤ 5) = F (5)
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The Binomial Distribution
We want to find the probability that the Red Sox win 5 or
fewer,

P (X ≤ 5) = F (5)

Since there is no simple formula for F for a binomial
distribution, we have to use one of the methods listed earlier
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The Binomial Distribution
We want to find the probability that the Red Sox win 5 or
fewer,

P (X ≤ 5) = F (5)

Since there is no simple formula for F for a binomial
distribution, we have to use one of the methods listed earlier

In R, enter pdist(5,7,0.6)
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The Binomial Distribution
We want to find the probability that the Red Sox win 5 or
fewer,

P (X ≤ 5) = F (5)

Since there is no simple formula for F for a binomial
distribution, we have to use one of the methods listed earlier

In R, enter pdist(5,7,0.6)

The result should be 0.841
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The Binomial Distribution
Example: A baseball player has a .300 batting average.

If the player gets to bat five times in a game, what is the
probability that he gets one hit or less:
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The Binomial Distribution
Example: A baseball player has a .300 batting average.

If the player gets to bat five times in a game, what is the
probability that he gets one hit or less:

We’ll assume a binomial distribution with n = 5 and
p = 0.300, then we want F (1) = P (X ≤ 1):

In R enter: pdist(1,5,0.300)
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The Binomial Distribution
Example: A baseball player has a .300 batting average.

If the player gets to bat five times in a game, what is the
probability that he gets one hit or less:

We’ll assume a binomial distribution with n = 5 and
p = 0.300, then we want F (1) = P (X ≤ 1):

In R enter: pdist(1,5,0.300)

The result is 0.528, so in games where a .300 hitter bats five
times, more than 50 percent of the time they get one hit or
less.
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The Binomial Distribution
Example: The probability that it rains on a given weekend is
0.20.

In a month with four weekends, what is the probability that
two or fewer are rainy?
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The Binomial Distribution
Example: The probability that it rains on a given weekend is
0.20.

In a month with four weekends, what is the probability that
two or fewer are rainy?

Assume a binomial distribution with n = 4 and p = 0.2.

In R enter: pdist(2,4,0.20)
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The Binomial Distribution
Example: The probability that it rains on a given weekend is
0.20.

In a month with four weekends, what is the probability that
two or fewer are rainy?

Assume a binomial distribution with n = 4 and p = 0.2.

In R enter: pdist(2,4,0.20)

The result is 0.9728,

Discrete Distributions – p. 14/33



The Binomial Distribution
Example: If

F (x) = P (X ≤ x)

is the probability of the event A="x or fewer successes", the
compliment of this event A′ is "more than x successes"

Recall that the probability of the compliment A′ is always
1 − P (A).

If the chance of rain on a weekend is 0.2 and there are four
weekends in a month, what is the probability that it rains on
more than 2 weekends?
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The Binomial Distribution
Example: If

F (x) = P (X ≤ x)

is the probability of the event A="x or fewer successes", the
compliment of this event A′ is "more than x successes"

Recall that the probability of the compliment A′ is always
1 − P (A).

If the chance of rain on a weekend is 0.2 and there are four
weekends in a month, what is the probability that it rains on
more than 2 weekends?

As before, assume a binomial distribution with n = 4 and
p = 0.2.

In R enter: 1-pdist(2,4,0.20)
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The Binomial Distribution
Example: If

F (x) = P (X ≤ x)

is the probability of the event A="x or fewer successes", the
compliment of this event A′ is "more than x successes"

Recall that the probability of the compliment A′ is always
1 − P (A).

If the chance of rain on a weekend is 0.2 and there are four
weekends in a month, what is the probability that it rains on
more than 2 weekends?

As before, assume a binomial distribution with n = 4 and
p = 0.2.

In R enter: 1-pdist(2,4,0.20)

The result is 0.0272,
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The Binomial Distribution
The expected value of a binomial random variable E(X) is:

E(X) =
n

∑

x=0

x · f(x)
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The Binomial Distribution
The expected value of a binomial random variable E(X) is:

E(X) =
n

∑

x=0

x · f(x)

E(X) =
∑

x ·

(

n

x

)

px(1 − p)n−x = np
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The Binomial Distribution
To find the variance V (X) of a binomial random variable,
first we find E(X2):

E(X2) =
n

∑

x=0

x2
· f(x)
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The Binomial Distribution
To find the variance V (X) of a binomial random variable,
first we find E(X2):

E(X2) =
n

∑

x=0

x2
· f(x)

E(X2) =
∑

x2
·

(

n

x

)

px(1 − p)n−x = n2p2
− np2 + np
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The Binomial Distribution
To find the variance V (X) of a binomial random variable,
first we find E(X2):

E(X2) =
n

∑

x=0

x2
· f(x)

E(X2) =
∑

x2
·

(

n

x

)

px(1 − p)n−x = n2p2
− np2 + np

Then

V (X) = E(X2) − [E(X)]2 = n2p2
− np2 + np − n2p2

and
V (X) = np(1 − p)
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The Binomial Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
binomial experiment with n = 6 trials and probability of
success p = 0.4:

x<-rbinom(1000000,6,0.4)
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The Binomial Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
binomial experiment with n = 6 trials and probability of
success p = 0.4:

x<-rbinom(1000000,6,0.4)

Now plot a histogram of the results:

hist(x)
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The Binomial Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
binomial experiment with n = 6 trials and probability of
success p = 0.4:

x<-rbinom(1000000,6,0.4)

Now plot a histogram of the results:

hist(x)

To get a table of the results enter

table(x)
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The Binomial Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
binomial experiment with n = 6 trials and probability of
success p = 0.4:

x<-rbinom(1000000,6,0.4)

Now plot a histogram of the results:

hist(x)

To get a table of the results enter

table(x)

The results should look something like:
0 1 2 3 4 5

77647 258841 346623 230275 76253 10361
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The Binomial Distribution

0 1 2 3 4 5
77647 258841 346623 230275 76253 10361

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dbinom(0,5,0.4)
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The Binomial Distribution

0 1 2 3 4 5
77647 258841 346623 230275 76253 10361

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dbinom(0,5,0.4)

The result should be something like

[1] 0.07776
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The Binomial Distribution

0 1 2 3 4 5
77647 258841 346623 230275 76253 10361

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dbinom(0,5,0.4)

The result should be something like

[1] 0.07776

To get the probability that X = 1 enter

dbinom(1,5,0.4)
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The Binomial Distribution

0 1 2 3 4 5
77647 258841 346623 230275 76253 10361

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dbinom(0,5,0.4)

The result should be something like

[1] 0.07776

To get the probability that X = 1 enter

dbinom(1,5,0.4)

This time the results should look something like:

[1] 0.2592
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The Binomial Distribution

0 1 2 3 4 5
77647 258841 346623 230275 76253 10361

Next compute the probability that X = 2:

dbinom(2,5,0.4)
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The Binomial Distribution

0 1 2 3 4 5
77647 258841 346623 230275 76253 10361

Next compute the probability that X = 2:

dbinom(2,5,0.4)

The result should be something like

[1] 0.3456
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The Binomial Distribution

0 1 2 3 4 5
77647 258841 346623 230275 76253 10361

Next compute the probability that X = 2:

dbinom(2,5,0.4)

The result should be something like

[1] 0.3456

To get the probability that X = 5 enter

dbinom(1,5,0.4)
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The Binomial Distribution

0 1 2 3 4 5
77647 258841 346623 230275 76253 10361

Next compute the probability that X = 2:

dbinom(2,5,0.4)

The result should be something like

[1] 0.3456

To get the probability that X = 5 enter

dbinom(1,5,0.4)

This time the results should look something like:

[1] 0.01024
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The Binomial Distribution
The expected value E(X) in this case is:

E(X) = np = 5 · 0.4 = 2
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The Binomial Distribution
The expected value E(X) in this case is:

E(X) = np = 5 · 0.4 = 2

To compute the sample mean x, enter

mean(x)
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The Binomial Distribution
The expected value E(X) in this case is:

E(X) = np = 5 · 0.4 = 2

To compute the sample mean x, enter

mean(x) The result should be something like

[1] 1.999759
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The Binomial Distribution
The variance V (X) in this case is:

V (X) = np(1 − p) = 5 · 0.4 · 0.6 = 1.2
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The Binomial Distribution
The variance V (X) in this case is:

V (X) = np(1 − p) = 5 · 0.4 · 0.6 = 1.2

To compute the sample variance s2, enter

var(x)
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The Binomial Distribution
The variance V (X) in this case is:

V (X) = np(1 − p) = 5 · 0.4 · 0.6 = 1.2

To compute the sample variance s2, enter

var(x) The result should be something like

[1] 1.197966
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The Binomial Distribution
At a certain intersection, the probability that a car goes
stright through is 0.8.

If we observe 15 cars, what is the probability that 10 or
fewer go straight through?
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The Binomial Distribution
At a certain intersection, the probability that a car goes
stright through is 0.8.

If we observe 15 cars, what is the probability that 10 or
fewer go straight through?

Enter pbinom(10,15,0.8)
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The Binomial Distribution
At a certain intersection, the probability that a car goes
stright through is 0.8.

If we observe 15 cars, what is the probability that 10 or
fewer go straight through?

Enter pbinom(10,15,0.8) The result should be .164
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The Binomial Distribution
92% of a certain airline’s flights arrive on time.

On a day when the airline operates 30 flights, what is the
probablility that more than 27 arrive on time?
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The Binomial Distribution
92% of a certain airline’s flights arrive on time.

On a day when the airline operates 30 flights, what is the
probablility that more than 27 arrive on time?

Enter 1-pbinom(27,30,0.92)
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The Binomial Distribution
92% of a certain airline’s flights arrive on time.

On a day when the airline operates 30 flights, what is the
probablility that more than 27 arrive on time?

Enter 1-pbinom(27,30,0.92) The result should be .565
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The Geometric Distribution
The geometric experiment consists of:

Independent Bernoulli trials are performed until the first
"success" is obtained

The random variable X is the number of failures
obtained

The probability of success p is the same for all trials
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The Geometric Distribution
The geometric experiment consists of:

Independent Bernoulli trials are performed until the first
"success" is obtained

The random variable X is the number of failures
obtained

The probability of success p is the same for all trials

The probability mass function (pmf) f(x) is:

f(x) = P (X = x) = g(x; p) = p(1 − p)x, x = 0, 1, 2, 3, . . .

Discrete Distributions – p. 25/33



The Geometric Distribution
If you sum the values of f(x) over all values from zero to
infinity, the sum is one.

∞
∑

x=0

p(1 − p)x = p ·

∞
∑

x=0

(1 − p)n

Discrete Distributions – p. 26/33



The Geometric Distribution
If you sum the values of f(x) over all values from zero to
infinity, the sum is one.

∞
∑

x=0

p(1 − p)x = p ·

∞
∑

x=0

(1 − p)n

The sum is now a geometric series with r = 1 − p. The sum
of a geometric series is 1/(1 − r), so

p ·

∞
∑

x=0

(1 − p)n = p ·

(

1

1 − (1 − p)

)

= p ·
1

p
= 1
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The Geometric Distribution
The expected value of a geometric random variable E(X)
is:

E(X) =
n

∑

x=0

x · f(x)
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The Geometric Distribution
The expected value of a geometric random variable E(X)
is:

E(X) =
n

∑

x=0

x · f(x)

E(X) =
∑

x· (1 − p)x =
1 − p

p
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The Geometric Distribution
To find the variance V (X) of a geometric random variable,
first we find E(X2):

E(X2) =
n

∑

x=0

x2
· f(x)
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The Geometric Distribution
To find the variance V (X) of a geometric random variable,
first we find E(X2):

E(X2) =
n

∑

x=0

x2
· f(x)

E(X2) =
∑

x2
· x(1 − p)x =

2 − 3p + p2

p2

Discrete Distributions – p. 28/33



The Geometric Distribution
To find the variance V (X) of a geometric random variable,
first we find E(X2):

E(X2) =
n

∑

x=0

x2
· f(x)

E(X2) =
∑

x2
· x(1 − p)x =

2 − 3p + p2

p2

Then

V (X) = E(X2) − [E(X)]2 =
1 − p

p2
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The Geometric Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
geometric experiment with probability of success p = 0.4 at
each trial:

x<-rgeom(1000000,0.4)
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The Geometric Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
geometric experiment with probability of success p = 0.4 at
each trial:

x<-rgeom(1000000,0.4)

Now plot a histogram of the results:

hist(x)
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The Geometric Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
geometric experiment with probability of success p = 0.4 at
each trial:

x<-rgeom(1000000,0.4)

Now plot a histogram of the results:

hist(x)

To get a table of the results enter

table(x)
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The Geometric Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
geometric experiment with probability of success p = 0.4 at
each trial:

x<-rgeom(1000000,0.4)

Now plot a histogram of the results:

hist(x)

To get a table of the results enter

table(x)

The results through X = 6 should look something like:
0 1 2 3 4 5 6

399422 240431 144595 86377 51550 31004 18720
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The Geometric Distribution

0 1 2 3 4 5 6
399422 240431 144595 86377 51550 31004 18720

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dgeom(0,0.4)
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The Geometric Distribution

0 1 2 3 4 5 6
399422 240431 144595 86377 51550 31004 18720

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dgeom(0,0.4)

The result should be something like

[1] 0.4
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The Geometric Distribution

0 1 2 3 4 5 6
399422 240431 144595 86377 51550 31004 18720

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dgeom(0,0.4)

The result should be something like

[1] 0.4

To get the probability that X = 1 enter

dgeom(1,0.4)
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The Geometric Distribution

0 1 2 3 4 5 6
399422 240431 144595 86377 51550 31004 18720

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dgeom(0,0.4)

The result should be something like

[1] 0.4

To get the probability that X = 1 enter

dgeom(1,0.4)

This time the results should look something like:

[1] 0.24
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The Geometric Distribution

0 1 2 3 4 5 6
399422 240431 144595 86377 51550 31004 18720

Next compute the probability that X = 2:

dgeom(2,0.4)
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The Geometric Distribution

0 1 2 3 4 5 6
399422 240431 144595 86377 51550 31004 18720

Next compute the probability that X = 2:

dgeom(2,0.4)

The result should be something like

[1] 0.144
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The Geometric Distribution

0 1 2 3 4 5 6
399422 240431 144595 86377 51550 31004 18720

Next compute the probability that X = 2:

dgeom(2,0.4)

The result should be something like

[1] 0.144

To get the probability that X = 5 enter

dbinom(1,5,0.4)
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The Geometric Distribution

0 1 2 3 4 5 6
399422 240431 144595 86377 51550 31004 18720

Next compute the probability that X = 2:

dgeom(2,0.4)

The result should be something like

[1] 0.144

To get the probability that X = 5 enter

dbinom(1,5,0.4)

This time the results should look something like:

[1] 0.031104
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The Geometric Distribution
The expected value E(X) in this case is:

E(X) =
1 − p

p
=

.6

.4
= 1.5
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The Geometric Distribution
The expected value E(X) in this case is:

E(X) =
1 − p

p
=

.6

.4
= 1.5

To compute the sample mean x, enter

mean(x)
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The Geometric Distribution
The expected value E(X) in this case is:

E(X) =
1 − p

p
=

.6

.4
= 1.5

To compute the sample mean x, enter

mean(x) The result should be something like

[1] 1.499121
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The Geometric Distribution
The variance V (X) in this case is:

V (X) =
1 − p

p2
=

.6

.42
= 3.75
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The Geometric Distribution
The variance V (X) in this case is:

V (X) =
1 − p

p2
=

.6

.42
= 3.75

To compute the sample variance s2, enter

var(x)
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The Geometric Distribution
The variance V (X) in this case is:

V (X) =
1 − p

p2
=

.6

.42
= 3.75

To compute the sample variance s2, enter

var(x) The result should be something like

[1] 3.733986
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