The Uniform Distribution

- spreadsheet: RAND()
- R:runif(1)
- **• BUGS**: $x \sim dunif(0,1)$

The Uniform Distribution

- spreadsheet: RAND()
- R:runif(1)
- **• BUGS**: $x \sim dunif(0,1)$
- **Support:** [0, 1]
- Expected value: E(X) = 1/2
- **•** Variance: V(X) = 1/12

The Uniform Distribution

Functions

- spreadsheet: RAND()
- R:runif(1)
- BUGS: $x \sim dunif(0,1)$
- **Support:** [0, 1]
- Expected value: E(X) = 1/2
- **•** Variance: V(X) = 1/12

The uniform is one of the simplest continuous distributions, and the starting point for most simulation procedures.

The Normal Distribution

- spreadsheet: NORMINV(RAND(), mu, sigma)
- R:rnorm(1,mu,sigma)
- BUGS: x~ dnorm(mu,tau) with tau=1/sigma

The Normal Distribution

- spreadsheet: NORMINV(RAND(), mu, sigma)
- R:rnorm(1,mu,sigma)
- BUGS: x~ dnorm(mu,tau) with tau=1/sigma
- Support: $-\infty, \infty$)
- **•** Expected value: $E(X) = \mu$
- Variance: $V(X) = \sigma^2$

The Normal Distribution

Functions:

- spreadsheet: NORMINV(RAND(), mu, sigma)
- R:rnorm(1,mu,sigma)
- BUGS: x~ dnorm(mu,tau) with tau=1/sigma
- Support: $-\infty, \infty$)
- **•** Expected value: $E(X) = \mu$
- Variance: $V(X) = \sigma^2$

The normal is the most important distribution in statistics because of a number of theoretical results including the **central limit theorem**.

The Chi-Square Distribution

- spreadsheet: CHIINV(RAND(),k)
- R:rchisq(1,k)
- **BUGS**: x~ dchisq(k)

The Chi-Square Distribution

- spreadsheet: CHIINV(RAND(),k)
- R:rchisq(1,k)
- BUGS: x~ dchisq(k)
- Support: $[0,\infty)$
- **•** Expected value: E(X) = k
- Variance: V(X) = 2k

The Chi-Square Distribution

Functions:

- spreadsheet: CHIINV(RAND(),k)
- R:rchisq(1,k)
- BUGS: x~ dchisq(k)
- Support: $[0,\infty)$
- **•** Expected value: E(X) = k
- Variance: V(X) = 2k

Many "sums of squares" that appear in statistics have a chi-square distribution when the underlying population is normal.

The t Distribution

- spreadsheet: TINV(RAND(),k)
- R:rt(1,k)
- BUGS: x~ dt(0,1,k)

The t Distribution

- spreadsheet: TINV(RAND(),k)
- R:rt(1,k)
- BUGS: x~ dt(0,1,k)
- Support: $(-\infty, \infty)$
- **•** Expected value: E(X) = 0
- Variance: V(X) = k/(k-2) for k > 2

The t Distribution

Functions:

- spreadsheet: TINV(RAND(),k)
- R:rt(1,k)
- **BUGS**: x~ dt(0,1,k)
- Support: $(-\infty, \infty)$
- **•** Expected value: E(X) = 0
- Variance: V(X) = k/(k-2) for k > 2

The t distribution becomes almost indistinguishable from the normal as the number of degrees of freedom becomes larger. For k above 30 there is not much difference between them.

The F Distribution

Functions:

- **•** spreadsheet: FINV(RAND(), k_1 , k_2)
- **9 R**: rf(1, k_1 , k_2)

The ratio of two independent chi-square random variables divided by their respective degrees of freedom has an F distribution.

The F Distribution

Functions:

- **•** spreadsheet: FINV(RAND(), k_1 , k_2)
- **9** R:rf(1, k_1 , k_2)

The ratio of two independent chi-square random variables divided by their respective degrees of freedom has an F distribution.

- support: $[0,\infty)$
- parameters: degrees of freedom (numerator and denominator) k_1, k_2
- expected value E(X): $k_2/(k_2 2)$ for $k_2 > 2$
- variance V(X): (complicated)

The F Distribution

Functions:

- **•** spreadsheet: FINV(RAND(), k_1 , k_2)
- **9** R:rf(1, k_1 , k_2)

The ratio of two independent chi-square random variables divided by their respective degrees of freedom has an F distribution.

- support: $[0,\infty)$
- parameters: degrees of freedom (numerator and denominator) k_1, k_2
- expected value E(X): $k_2/(k_2 2)$ for $k_2 > 2$
- variance V(X): (complicated)

Used in many common hypothesis tests

The Exponential Distribution

- R:rexp(1,lambda)
- **9** BUGS: $x \sim dexp(lambda)$

The Exponential Distribution

- R:rexp(1,lambda)
- **• BUGS**: $x \sim dexp(lambda)$
- support: $[0,\infty)$
- **•** parameters: λ
- expected value E(X): $1/\lambda$
- variance V(X): $1/\lambda^2$

The Exponential Distribution

Functions:

- R:rexp(1,lambda)
- BUGS: $x \sim dexp(lambda)$
- support: $[0,\infty)$
- **•** parameters: λ
- expected value E(X): 1/ λ
- variance V(X): $1/\lambda^2$

Plays an important role in time-to-failure models and queueing theory

The Beta Distribution

- **R**:rbeta(1,a,b)
- **BUGS**: p~ dbeta(a,b)

The Beta Distribution

- R:rbeta(1,a,b)
- **• BUGS**: $p \sim dbeta(a,b)$
- **support:** [0, 1]
- parameters: a, b
- expected value E(X): a/(a+b)
- variance V(X): $ab/((a+b)^2(a+b+1))$

The Beta Distribution

Functions:

- R:rbeta(1,a,b)
- BUGS: $p \sim dbeta(a,b)$
- **support:** [0, 1]
- parameters: a, b
- expected value E(X): a/(a+b)
- variance V(X): $ab/((a+b)^2(a+b+1))$

Commonly used as a prior distribution in Bayesian analysis

The Gamma Distribution

- R: rgamma(1,a,b)
- **• BUGS**: $x \sim dgamma(a,b)$

The Gamma Distribution

- R: rgamma(1,a,b)
- **• BUGS**: $x \sim dgamma(a,b)$
- support: $[0,\infty)$
- parameters: a, b
- **•** expected value E(X): a/b
- variance V(X): a/b^2

The Gamma Distribution

Functions:

- R: rgamma(1,a,b)
- **9** BUGS: $x \sim dgamma(a,b)$
- support: $[0,\infty)$
- parameters: a, b
- expected value E(X): a/b
- variance V(X): a/b^2

Commonly used as a prior distribution in Bayesian analysis

The Logistic Distribution

- **P** R:rlogis(1, μ ,s)
- **•** BUGS: $x \sim dlogis(\mu, tau)$ (tau=1/s)

The Logistic Distribution

- R:rlogis(1, μ ,s)
- **• BUGS**: $x \sim \text{dlogis}(\mu, \text{tau})$ (tau=1/s)
- support: $(-\infty,\infty)$
- **•** parameters: μ, s (location and scale)
- expected value E(X): μ
- variance V(X): $s^2\pi^2/3$

The Logistic Distribution

Functions:

- R:rlogis(1, μ ,s)
- **• BUGS**: $x \sim \text{dlogis}(\mu, \text{tau})$ (tau=1/s)
- support: $(-\infty,\infty)$
- **•** parameters: μ, s (location and scale)
- expected value E(X): μ
- variance V(X): $s^2\pi^2/3$

Commonly used for the response in logistic regression

The Pareto Distribution

- **P**: rlogis(1, α ,k)
- **9 BUGS**: $\mathbf{x} \sim \text{dpar}(\alpha, \mathbf{k})$

The Pareto Distribution

- R:rlogis(1, α ,k)
- **9 BUGS**: $\mathbf{x} \sim \text{dpar}(\alpha, \mathbf{k})$
- support: $[k,\infty)$
- **parameters:** α, k (location and shape)
- expected value E(X): $\alpha k/(\alpha 1)$ ($\alpha > 1$)
- variance V(X): $\alpha k^2 / ((\alpha 1)^2 (\alpha 2))$ ($\alpha > 2$)

The Pareto Distribution

Functions:

- **9** R:rlogis(1, α ,k)
- **9 BUGS**: $\mathbf{x} \sim \text{dpar}(\alpha, \mathbf{k})$
- support: $[k,\infty)$
- **parameters:** α, k (location and shape)
- expected value E(X): $\alpha k/(\alpha 1)$ ($\alpha > 1$)
- variance V(X): $\alpha k^2 / ((\alpha 1)^2 (\alpha 2))$ (α > 2)

Commonly used for extreme value distributions

The Weibull Distribution

- **P** R:rweibull(1, v, λ)
- **9** BUGS: $\mathbf{x} \sim \text{dweib}(v, \lambda)$

The Weibull Distribution

- **R**: rweibull(1, v, λ)
- BUGS: $\mathbf{x} \sim \text{dweib}(v, \lambda)$
- support: $[0,\infty)$
- **•** parameters: v, λ (shape and scale)
- expected value E(X): $v\Gamma(1+1/k)$
- variance V(X): $v^2(\Gamma(1+2/k) (\Gamma(1+1/k))^2)$

The Weibull Distribution

Functions:

- **R**: rweibull(1, v, λ)
- BUGS: $\mathbf{x} \sim \text{dweib}(v, \lambda)$
- support: $[0,\infty)$
- **•** parameters: v, λ (shape and scale)
- expected value E(X): $v\Gamma(1+1/k)$
- variance V(X): $v^2(\Gamma(1+2/k) (\Gamma(1+1/k))^2)$

Commonly used for time to failure applications with long wait times