Continuous Random Variables

A continuous random variable is one that assumes all values in an interval (or intervals) on the real line.

Continuous Random Variables

A continuous random variable is one that assumes all values in an interval (or intervals) on the real line.
Measurements of continuous quantities are usually represented as continuous random variables:

- temperature
- salinity
- pH
- elapsed time

Probability Density Functions

If X is a continuous random variable, the probability density function (pdf) of X is a function $f(x)$ with the property that, for any $a \leq b$,

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

Probability Density Functions

If X is a continuous random variable, the probability density function (pdf) of X is a function $f(x)$ with the property that, for any $a \leq b$,

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

Any function with the following properties is a valid pdf:

$$
f(x) \geq 0 \quad \text { for all } x \quad \text { and } \quad \int_{-\infty}^{\infty} f(x) d x=1
$$

Example 1

Suppose

$$
f(x)=2 x \quad 0 \leq x \leq 1
$$

Find

$$
P\left(\frac{1}{4} \leq X \leq \frac{3}{4}\right)
$$

Example 1

Suppose

$$
f(x)=2 x \quad 0 \leq x \leq 1
$$

Find

$$
P\left(\frac{1}{4} \leq X \leq \frac{3}{4}\right)
$$

By definition,

$$
P\left(\frac{1}{4} \leq X \leq \frac{3}{4}\right)=\int_{1 / 4}^{3 / 4} 2 x d x=\left.x^{2}\right|_{1 / 4} ^{3 / 4}=\frac{9}{16}-\frac{1}{16}=\frac{1}{2}
$$

Example 1

Find

$$
P\left(X \leq \frac{1}{2}\right)
$$

Example 1

Find

$$
P\left(X \leq \frac{1}{2}\right)
$$

By definition,

$$
P\left(X \leq \frac{1}{2}\right)=\int_{0}^{1 / 2} 2 x d x=\left.x^{2}\right|_{0} ^{1 / 2}=\frac{1}{4}-0=\frac{1}{4}
$$

Uniform Distribution

A continuous random variable X has a uniform distribution on the interval $[A, B]$ if its pdf is:

$$
f(x ; A, B)=\frac{1}{B-A} \quad A \leq x \leq B
$$

Uniform Distribution

A continuous random variable X has a uniform distribution on the interval $[A, B]$ if its pdf is:

$$
f(x ; A, B)=\frac{1}{B-A} \quad A \leq x \leq B
$$

By definition,

$$
P\left(X \leq \frac{1}{2}\right)=\int_{0}^{1 / 2} 2 x d x=\left.x^{2}\right|_{0} ^{1 / 2}=\frac{1}{4}-0=\frac{1}{4}
$$

Cumulative Distribution Functions

The cumulative distribution function (cdf) for a continuous random variable X is:

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(y) d y
$$

Cumulative Distribution Functions

The cumulative distribution function (cdf) for a continuous random variable X is:

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(y) d y
$$

$F(x)$ is the area under the graph of the pdf $f(x)$ to the left of x.

Cumulative Distribution Functions

The cumulative distribution function (cdf) for a continuous random variable X is:

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(y) d y
$$

$F(x)$ is the area under the graph of the pdf $f(x)$ to the left of x.
From the fundamental theorem of calculus,

$$
\frac{d}{d x} F(x)=\frac{d}{d x} \int_{-\infty}^{x} f(y) d y=f(x)
$$

Cumulative Distribution Functions

A useful variation is:

$$
P(X>x)=1-P(X \leq x)=1-F(x)
$$

Cumulative Distribution Functions

A useful variation is:

$$
P(X>x)=1-P(X \leq x)=1-F(x)
$$

Another is:

$$
P(a \leq X \leq b)=F(b)-F(a)
$$

Cumulative Distribution Functions

A useful variation is:

$$
P(X>x)=1-P(X \leq x)=1-F(x)
$$

Another is:

$$
P(a \leq X \leq b)=F(b)-F(a)
$$

The above inequality implies that the probability that X equals any single value is zero:

$$
P(a \leq X \leq a)=F(a)-F(a)=0
$$

This takes a bit of getting used to.

Cumulative Distribution Functions

The cdf can be used to determine percentiles of a distribution. The $100 p^{\text {th }}$ percentile $\nu(p)$ of the distribution of X satisfies

$$
P(X \leq \nu(p))=F(\nu(p))=p
$$

Cumulative Distribution Functions

The cdf can be used to determine percentiles of a distribution. The $100 p^{\text {th }}$ percentile $\nu(p)$ of the distribution of X satisfies

$$
P(X \leq \nu(p))=F(\nu(p))=p
$$

The median of the distribution of X is $\nu(.5)$ and satisfies

$$
P(X \leq \nu(0.5))=F(\nu(0.5))=0.5
$$

Expected Value

The expected value of a random variable X is defined as

$$
\mu_{x}=E(X)=\int_{-\infty}^{\infty} x \cdot f(x) d x
$$

Expected Value

The expected value of a random variable X is defined as

$$
\mu_{x}=E(X)=\int_{-\infty}^{\infty} x \cdot f(x) d x
$$

The expected value of a function $h(x)$ random variable X is defined as

$$
\mu_{h(x)}=E(h(X))=\int_{-\infty}^{\infty} h(x) \cdot f(x) d x
$$

Expected Value

The variance of a random variable X is defined as

$$
\sigma_{x}^{2}=V(X)=\int_{-\infty}^{\infty}(x-\mu) \cdot f(x) d x=E[(x-\mu)]^{2}
$$

Expected Value

The variance of a random variable X is defined as

$$
\sigma_{x}^{2}=V(X)=\int_{-\infty}^{\infty}(x-\mu) \cdot f(x) d x=E[(x-\mu)]^{2}
$$

The standard deviation (SD) of X is

$$
\sigma_{x}=\sqrt{V(x)}
$$

