
Continuous Random Variables
A continuous random variable is one that assumes all
values in an interval (or intervals) on the real line.
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Continuous Random Variables
A continuous random variable is one that assumes all
values in an interval (or intervals) on the real line.

Measurements of continuous quantities are usually
represented as continuous random variables:

temperature

salinity

pH

elapsed time
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Probability Density Functions
If X is a continuous random variable, the probability density
function (pdf) of X is a function f(x) with the property that,
for any a ≤ b,

P (a ≤ X ≤ b) =

∫ b

a
f(x) dx
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Probability Density Functions
If X is a continuous random variable, the probability density
function (pdf) of X is a function f(x) with the property that,
for any a ≤ b,

P (a ≤ X ≤ b) =

∫ b

a
f(x) dx

Any function with the following properties is a valid pdf:

f(x) ≥ 0 for all x and
∫

∞

−∞

f(x) dx = 1
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Example 1
Suppose

f(x) = 2x 0 ≤ x ≤ 1

Find

P

(

1

4
≤ X ≤

3

4

)
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Example 1
Suppose

f(x) = 2x 0 ≤ x ≤ 1

Find

P

(

1

4
≤ X ≤

3

4

)

By definition,

P

(

1

4
≤ X ≤

3

4

)

=

∫ 3/4

1/4
2x dx = x2

∣

∣

3/4

1/4
=

9

16
−

1

16
=

1

2
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Example 1
Find

P

(

X ≤
1

2

)
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Example 1
Find

P

(

X ≤
1

2

)

By definition,

P

(

X ≤
1

2

)

=

∫ 1/2

0
2x dx = x2

∣

∣

1/2

0
=

1

4
− 0 =

1

4
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Uniform Distribution
A continuous random variable X has a uniform
distribution on the interval [A,B] if its pdf is:

f(x;A,B) =
1

B − A
A ≤ x ≤ B
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Uniform Distribution
A continuous random variable X has a uniform
distribution on the interval [A,B] if its pdf is:

f(x;A,B) =
1

B − A
A ≤ x ≤ B

By definition,

P

(

X ≤
1

2

)

=

∫ 1/2

0
2x dx = x2

∣

∣

1/2

0
=

1

4
− 0 =

1

4
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Cumulative Distribution Functions
The cumulative distribution function (cdf) for a
continuous random variable X is:

F (x) = P (X ≤ x) =

∫ x

−∞

f(y) dy
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Cumulative Distribution Functions
The cumulative distribution function (cdf) for a
continuous random variable X is:

F (x) = P (X ≤ x) =

∫ x

−∞

f(y) dy

F (x) is the area under the graph of the pdf f(x) to the left of
x.
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Cumulative Distribution Functions
The cumulative distribution function (cdf) for a
continuous random variable X is:

F (x) = P (X ≤ x) =

∫ x

−∞

f(y) dy

F (x) is the area under the graph of the pdf f(x) to the left of
x.

From the fundamental theorem of calculus,

d

dx
F (x) =

d

dx

∫ x

−∞

f(y) dy = f(x)
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Cumulative Distribution Functions
A useful variation is:

P (X > x) = 1 − P (X ≤ x) = 1 − F (x)

Continuous Random Variables – p. 7/10



Cumulative Distribution Functions
A useful variation is:

P (X > x) = 1 − P (X ≤ x) = 1 − F (x)

Another is:
P (a ≤ X ≤ b) = F (b) − F (a)
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Cumulative Distribution Functions
A useful variation is:

P (X > x) = 1 − P (X ≤ x) = 1 − F (x)

Another is:
P (a ≤ X ≤ b) = F (b) − F (a)

The above inequality implies that the probability that X

equals any single value is zero:

P (a ≤ X ≤ a) = F (a) − F (a) = 0

This takes a bit of getting used to.
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Cumulative Distribution Functions
The cdf can be used to determine percentiles of a
distribution. The 100pth percentile ν(p) of the distribution of
X satisfies

P (X ≤ ν(p)) = F (ν(p)) = p
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Cumulative Distribution Functions
The cdf can be used to determine percentiles of a
distribution. The 100pth percentile ν(p) of the distribution of
X satisfies

P (X ≤ ν(p)) = F (ν(p)) = p

The median of the distribution of X is ν(.5) and satisfies

P (X ≤ ν(0.5)) = F (ν(0.5)) = 0.5
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Expected Value
The expected value of a random variable X is defined as

µx = E(X) =

∫

∞

−∞

x · f(x) dx
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Expected Value
The expected value of a random variable X is defined as

µx = E(X) =

∫

∞

−∞

x · f(x) dx

The expected value of a function h(x) random variable X is
defined as

µh(x) = E(h(X)) =

∫

∞

−∞

h(x) · f(x) dx
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Expected Value
The variance of a random variable X is defined as

σ2
x = V (X) =

∫

∞

−∞

(x − µ) · f(x) dx = E[(x − µ)]2
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Expected Value
The variance of a random variable X is defined as

σ2
x = V (X) =

∫

∞

−∞

(x − µ) · f(x) dx = E[(x − µ)]2

The standard deviation (SD) of X is

σx =
√

V (x)
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