General Definition

For any two events A and B with $P(B)>0$, the conditional probability of A given that B has occurred is:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

General Definition

For any two events A and B with $P(B)>0$, the conditional probability of A given that B has occurred is:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Alternatively one can write this as

$$
P(A \cap B)=P(A \mid B) \cdot P(B)
$$

General Definition

For any two events A and B with $P(B)>0$, the conditional probability of A given that B has occurred is:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Alternatively one can write this as

$$
P(A \cap B)=P(A \mid B) \cdot P(B)
$$

The later is called the multiplication rule for $P(A \cap B)$.

General Definition

The multiplication rule extends to more than two events:

$$
P(A \cap B \cap C)=P(C \mid A \cap B) \cdot P(A \mid B) \cdot P(B)
$$

General Definition

The multiplication rule extends to more than two events:

$$
P(A \cap B \cap C)=P(C \mid A \cap B) \cdot P(A \mid B) \cdot P(B)
$$

In fact this can be continued indefinitely.

General Definition

The multiplication rule extends to more than two events:

$$
P(A \cap B \cap C)=P(C \mid A \cap B) \cdot P(A \mid B) \cdot P(B)
$$

In fact this can be continued indefinitely.
This result is useful for building up probibility trees of complicated sequences of events.

The Law of Total Probability

Suppose A_{1}, \ldots, A_{k} are mutually exclusive events, one of which must occur. Then for any event B,

$$
P(B)=P\left(B \mid A_{1}\right) \cdot P\left(A_{1}\right)+P\left(B \mid A_{2}\right) \cdot P\left(A_{2}\right)+\cdots+P\left(B \mid A_{k}\right) \cdot P\left(A_{k}\right)
$$

The Law of Total Probability

Suppose A_{1}, \ldots, A_{k} are mutually exclusive events, one of which must occur. Then for any event B,
$P(B)=P\left(B \mid A_{1}\right) \cdot P\left(A_{1}\right)+P\left(B \mid A_{2}\right) \cdot P\left(A_{2}\right)+\cdots+P\left(B \mid A_{k}\right) \cdot P\left(A_{k}\right)$
Suppose the Red Sox have clinched the pennant, but the national league championship game between Chicago and Pittsburgh has yet to be played. Let B be the event that Boston wins the world series, A_{1} be the event that Chicago wins the LCS, and A_{2} be the event that Pittsburgh wins the LCS.

The Law of Total Probability

Suppose A_{1}, \ldots, A_{k} are mutually exclusive events, one of which must occur. Then for any event B,
$P(B)=P\left(B \mid A_{1}\right) \cdot P\left(A_{1}\right)+P\left(B \mid A_{2}\right) \cdot P\left(A_{2}\right)+\cdots+P\left(B \mid A_{k}\right) \cdot P\left(A_{k}\right)$
Suppose the Red Sox have clinched the pennant, but the national league championship game between Chicago and Pittsburgh has yet to be played. Let B be the event that Boston wins the world series, A_{1} be the event that Chicago wins the LCS, and A_{2} be the event that Pittsburgh wins the LCS.
The probability that Boston wins the world series is:

$$
P(B)=P\left(B \mid A_{1}\right) \cdot P\left(A_{1}\right)+P\left(B \mid A_{2}\right) \cdot P\left(A_{2}\right)
$$

Baye's Theorem

Suppose A_{1}, \ldots, A_{k} are mutually exclusive events, one of which must occur, with prior probabilities A_{i}. Then for any event B, the posterior probability of A_{j} given that B has occurred is:

$$
P\left(A_{j} \mid B\right)=\frac{P\left(A_{j} \cap B\right)}{P(B)}
$$

Baye's Theorem

Suppose A_{1}, \ldots, A_{k} are mutually exclusive events, one of which must occur, with prior probabilities A_{i}. Then for any event B, the posterior probability of A_{j} given that B has occurred is:

$$
P\left(A_{j} \mid B\right)=\frac{P\left(A_{j} \cap B\right)}{P(B)}
$$

Using the law of total probability, this can be written as

$$
\frac{P\left(B \mid A_{j}\right) \cdot P\left(A_{j}\right)}{\sum_{i=1}^{k} P\left(B \mid A_{i}\right) \cdot P\left(A_{i}\right)}, \quad j=1, \ldots, k
$$

Independence

Two events A and B are said to be independent if:

$$
P(A \mid B)=P(A)
$$

Independence

Two events A and B are said to be independent if:

$$
P(A \mid B)=P(A)
$$

That is to say, knowledge that B has occurred gives us no information about whether or not A will occur.

Independence

Two events A and B are said to be independent if:

$$
P(A \mid B)=P(A)
$$

That is to say, knowledge that B has occurred gives us no information about whether or not A will occur.

Events that are not independent are said to be dependent

Independence

Two events A and B are independent if and only if:

$$
P(A \cap B)=P(A) \cdot P(B)
$$

Independence

Two events A and B are independent if and only if:

$$
P(A \cap B)=P(A) \cdot P(B)
$$

In other words, A and B are independent if and only if the probability of both A and B occurring is the product of the probabilities that each individual event occurs.

Independence

Two events A and B are independent if and only if:

$$
P(A \cap B)=P(A) \cdot P(B)
$$

In other words, A and B are independent if and only if the probability of both A and B occurring is the product of the probabilities that each individual event occurs.
Events $A_{1}, A_{2}, \ldots, A_{n}$ are called mutually independent if for every possible subset of these n events, the probability that each event in the subset occurs is the product of the individual probabilities.

