Sullivan Section 6.2

Gene Quinn

Binomial Probability Experiments

A binomial probability experiment is an experiment that meets the following criteria:

- The experiment consists of a fixed number n of repetitions called trials.

Binomial Probability Experiments

A binomial probability experiment is an experiment that meets the following criteria:

- The experiment consists of a fixed number n of repetitions called trials.
- Each trial has only two possible outcomes, which are mutually exclusive.
The two outcomes are usually referred to as success and failure.

Binomial Probability Experiments

A binomial probability experiment is an experiment that meets the following criteria:

- The experiment consists of a fixed number n of repetitions called trials.
- Each trial has only two possible outcomes, which are mutually exclusive.
The two outcomes are usually referred to as success and failure.
- Each of the trials is independent of the others.

That is, the outcome of one trial has no effect on the other trials.

Binomial Probability Experiments

A binomial probability experiment is an experiment that meets the following criteria:

- The experiment consists of a fixed number n of repetitions called trials.
- Each trial has only two possible outcomes, which are mutually exclusive.
The two outcomes are usually referred to as success and failure.
- Each of the trials is independent of the others.

That is, the outcome of one trial has no effect on the other trials.

- The probability of success is the same for each trial

Binomial Probability Experiments

When these conditions are met, the number of successes is denoted by X.
X is said to be a random variable having the binomial distribution.

Binomial Probability Experiments

When these conditions are met, the number of successes is denoted by X.
X is said to be a random variable having the binomial distribution.

If the probability of success is $1 / 2$, the binomial experiment is equivalent to a series of coin tosses.

Binomial Probability Experiments

The following notation is used for the binomial probability distribution:

- The experiment consists of n independent trials.

Binomial Probability Experiments

The following notation is used for the binomial probability distribution:

- The experiment consists of n independent trials.
- The probability of success on each trial is denoted by p.

Binomial Probability Experiments

The following notation is used for the binomial probability distribution:

- The experiment consists of n independent trials.
- The probability of success on each trial is denoted by p.
- The probability of failure on each trial is $1-p$.

Binomial Probability Experiments

The following notation is used for the binomial probability distribution:

- The experiment consists of n independent trials.
- The probability of success on each trial is denoted by p.
- The probability of failure on each trial is $1-p$.
- The total number of successes in n independent trials is denoted by X.

Computing Binomial Probabilities

The following structure known as Pascal's triangle is useful for computing binomial probabilities when n is fairly small ($n<10$).

Computing Binomial Probabilities

The entries in successive rows of Pascal's triangle are the sum of the two closest entries in the previous row.

Computing Binomial Probabilities

If you think of the outcome of n trials with two outcomes, success or failure, the entire experiment can be summarized as a sequence of $S^{\prime} s$ and $F^{\prime} s$ with n entries.

Computing Binomial Probabilities

If you think of the outcome of n trials with two outcomes, success or failure, the entire experiment can be summarized as a sequence of $S^{\prime} s$ and $F^{\prime} s$ with n entries.

In the row of Pascal's triangle corresponding to n trials, there are $n+1$ entries.

Computing Binomial Probabilities

If you think of the outcome of n trials with two outcomes, success or failure, the entire experiment can be summarized as a sequence of $S^{\prime} s$ and $F^{\prime} s$ with n entries.

In the row of Pascal's triangle corresponding to n trials, there are $n+1$ entries.

The sum of the entries in the row corresponding to n trials is always 2^{n}.
This represents the number of possible sequences of n letters where each one has to be either S or F.

Computing Binomial Probabilities

There are always $n+1$ entries in the row corresponding to n trials.

- The first entry is the number of sequences with no $S^{\prime} s$ and $n F^{\prime} s$ (the first entry is always 1)

Computing Binomial Probabilities

There are always $n+1$ entries in the row corresponding to n trials.

- The first entry is the number of sequences with no $S^{\prime} s$ and $n F^{\prime} s$ (the first entry is always 1)
- The second entry is the number of sequences having 1 S and $n-1 F^{\prime} s$ (the second entry is always n)

Computing Binomial Probabilities

There are always $n+1$ entries in the row corresponding to n trials.

- The first entry is the number of sequences with no $S^{\prime} s$ and $n F^{\prime} s$ (the first entry is always 1)
- The second entry is the number of sequences having 1 S and $n-1 F^{\prime} s$ (the second entry is always n)
- The third entry is the number of sequences having $2 S^{\prime} s$ and $n-2 F^{\prime} s$

Computing Binomial Probabilities

There are always $n+1$ entries in the row corresponding to n trials.

- The first entry is the number of sequences with no $S^{\prime} s$ and $n F^{\prime} s$ (the first entry is always 1)
- The second entry is the number of sequences having 1 S and $n-1 F^{\prime} s$ (the second entry is always n)
- The third entry is the number of sequences having $2 S^{\prime} s$ and $n-2 F^{\prime} s$
- The fourth entry is the number of sequences having 3 $S^{\prime} s$ and $n-3 F^{\prime} s$

Computing Binomial Probabilities

- The next to last entry is the number of sequences having $n-1 S^{\prime} s$ and $1 F$ (the next to last entry is always n)

Computing Binomial Probabilities

- The next to last entry is the number of sequences having $n-1 S^{\prime} s$ and $1 F$ (the next to last entry is always n)
- The last entry is the number of sequences having $n S^{\prime} s$ and $0 F^{\prime} s$ (the last entry is always 1)

Binomial Probabilities when $p=0.5$

The simplest case occurs when success and failure are equally likely.

If we identify "heads" with "success", the experiment corrsponds tossing a fair coin n times.

Binomial Probabilities when $p=0.5$

The simplest case occurs when success and failure are equally likely.

If we identify "heads" with "success", the experiment corrsponds tossing a fair coin n times.

In this case, the probability of obtaining $0,1,2$, etc. heads in n tosses is the corresponding entry in Pascal's table, divided by the sum of the row $\left(2^{n}\right)$.

Binomial Probabilities when $p \neq 0.5$

When success and failure are not equally likely, we need to use the following modified procedure to calculate the probabilities.

The number of trials n determines which row of Pascal's triangle is used.

Binomial Probabilities when $p \neq 0.5$

Suppose the probability of success on each trial is p.
We compute the probabilities associated with each value of X,
where X represents the number of successes in n trials.

- The first entry in the row is multiplied by p^{n}.

Binomial Probabilities when $p \neq 0.5$

Suppose the probability of success on each trial is p.
We compute the probabilities associated with each value of X,
where X represents the number of successes in n trials.

- The first entry in the row is multiplied by p^{n}.
- The second entry in the row is multiplied by $p^{n-1}(1-p)$.

Binomial Probabilities when $p \neq 0.5$

Suppose the probability of success on each trial is p.
We compute the probabilities associated with each value of X,
where X represents the number of successes in n trials.

- The first entry in the row is multiplied by p^{n}.
- The second entry in the row is multiplied by $p^{n-1}(1-p)$.
- The third entry in the row is multiplied by $p^{n-2}(1-p)^{2}$.

Binomial Probabilities when $p \neq 0.5$

Suppose the probability of success on each trial is p.
We compute the probabilities associated with each value of X,
where X represents the number of successes in n trials.

- The first entry in the row is multiplied by p^{n}.
- The second entry in the row is multiplied by $p^{n-1}(1-p)$.
- The third entry in the row is multiplied by $p^{n-2}(1-p)^{2}$.
- Continue in this fashion. The $n+1^{\text {st }}$ entry is multiplied by $(1-p)^{n}$

Computing Binomial Probabilities

An alternative method of computing binomial probabilities makes use of mathematical entities called combinations.

Computing Binomial Probabilities

An alternative method of computing binomial probabilities makes use of mathematical entities called combinations.

First, we need to define another mathematical entity called a factorial, which will be designated by a number followed by an exclamation point (!).

- We define 1 ! to be 1 .
- We define 2 ! to be $2 \cdot 1$.

Computing Binomial Probabilities

An alternative method of computing binomial probabilities makes use of mathematical entities called combinations.

First, we need to define another mathematical entity called a factorial, which will be designated by a number followed by an exclamation point (!).

- We define 1 ! to be 1 .
- We define 2 ! to be $2 \cdot 1$.
- We define 3 ! to be $3 \cdot 2 \cdot 1$.

Computing Binomial Probabilities

An alternative method of computing binomial probabilities makes use of mathematical entities called combinations.

First, we need to define another mathematical entity called a factorial, which will be designated by a number followed by an exclamation point (!).

- We define 1 ! to be 1 .
- We define 2 ! to be $2 \cdot 1$.
- We define 3 ! to be $3 \cdot 2 \cdot 1$.
- We define 4 ! to be $4 \cdot 3 \cdot 2 \cdot 1$.

Computing Binomial Probabilities

An alternative method of computing binomial probabilities makes use of mathematical entities called combinations.

First, we need to define another mathematical entity called a factorial, which will be designated by a number followed by an exclamation point (!).

- We define 1 ! to be 1 .
- We define 2 ! to be $2 \cdot 1$.
- We define 3 ! to be $3 \cdot 2 \cdot 1$.
- We define 4 ! to be $4 \cdot 3 \cdot 2 \cdot 1$.
- We define 5 ! to be $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$.

Computing Binomial Probabilities

An alternative method of computing binomial probabilities makes use of mathematical entities called combinations.

First, we need to define another mathematical entity called a factorial, which will be designated by a number followed by an exclamation point (!).

- We define 1 ! to be 1 .
- We define 2 ! to be $2 \cdot 1$.
- We define 3 ! to be $3 \cdot 2 \cdot 1$.
- We define 4 ! to be $4 \cdot 3 \cdot 2 \cdot 1$.
- We define 5 ! to be $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$.

For convenience, we define 0 ! to be 1 .

Computing Binomial Probabilities

Definition: The number of combinations of n objects taken r at a time is denoted by either

$$
{ }_{n} C_{r} \quad \text { or } \quad\binom{n}{r}
$$

and is defined to be:

$$
\frac{n!}{r!(n-r)!}
$$

Computing Binomial Probabilities

Example: Find the number of combinations of 4 objects taken 2 at a time.

That is, find

$$
{ }_{4} C_{2} \quad \text { or } \quad\binom{4}{2}
$$

Computing Binomial Probabilities

Example: Find the number of combinations of 4 objects taken 2 at a time.

That is, find

$$
{ }_{4} C_{2} \quad \text { or } \quad\binom{4}{2}
$$

By definition,

$$
\binom{4}{2}=\frac{4!}{2!(4-2)!}=\frac{4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1) \cdot(2 \cdot 1)}=\frac{24}{(2)(2)}=6
$$

Computing Binomial Probabilities in G

The general formula for computing the probability of k successes in a binomial experiment with n trials when the probability of success on each trial is p is:

$$
P(k \text { successes })=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n
$$

Computing Binomial Probabilities in G

The general formula for computing the probability of k successes in a binomial experiment with n trials when the probability of success on each trial is p is:

$$
P(k \text { successes })=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n
$$

or, equivalently,

$$
P(k \text { successes }) \quad={ }_{n} C_{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n
$$

Computing Binomial Probabilities

While it's good to know how these probabilities are computed, you don't have to do it by hand.

Computing Binomial Probabilities

While it's good to know how these probabilities are computed, you don't have to do it by hand.

Spreadsheets have a function, usually called BINOMDIST, that computes them.

Computing Binomial Probabilities

While it's good to know how these probabilities are computed, you don't have to do it by hand.

Spreadsheets have a function, usually called BINOMDIST, that computes them.

Most people find it better to use a spreadsheet, for convenience and accuracy

The BINOMDIST Function

Keep in mind we are trying to compute the probability of a given number of successes in a binomial experiment.

The BINOMDIST Function

Keep in mind we are trying to compute the probability of a given number of successes in a binomial experiment.

We have to know the number of trials in the experiment, n

The BINOMDIST Function

Keep in mind we are trying to compute the probability of a given number of successes in a binomial experiment.

We have to know the number of trials in the experiment, n
We also need to know the probability of success on each trial, p

The BINOMDIST Function

If Cumulative is FALSE, then BINOMDIST returns the probability of exactly x successes in n trials.

The BINOMDIST Function

If Cumulative is FALSE, then BINOMDIST returns the probability of exactly x successes in n trials.

So, to find the probability that exactly 4 out of 10 trials are successes when $p=0.6$, the formula would be:

BINOMDIST (4,10,0.6,FALSE)

The BINOMDIST Function

If Cumulative is FALSE, then BINOMDIST returns the probability of exactly x successes in n trials.

So, to find the probability that exactly 4 out of 10 trials are successes when $p=0.6$, the formula would be:

BINOMDIST (4, 10,0.6,FALSE)
To find the probability that exactly 7 out of 10 trials are successes when $p=0.6$, the formula would be:

BINOMDIST (7,10,0.6,FALSE)

The BINOMDIST Function

Sometimes we are interested in, say, the probability of 4 successes or fewer in 10 trials.
In this case, code Cumulative=TRUE in the BINOMDIST function.

The BINOMDIST Function

Sometimes we are interested in, say, the probability of 4 successes or fewer in 10 trials.

In this case, code Cumulative=TRUE in the BINOMDIST function.

To find the probability that 4 or fewer out of 10 trials are successes when $p=0.6$, the formula would be:
$=$ BINOMDIST (4, 10, 0.6,TRUE)

The BINOMDIST Function

Sometimes we are interested in, say, the probability of 4 successes or fewer in 10 trials.
In this case, code Cumulative=TRUE in the BINOMDIST function.

To find the probability that 4 or fewer out of 10 trials are successes when $p=0.6$, the formula would be:
=BINOMDIST (4,10,0.6,TRUE)
To find the probability that 7 or fewer out of 10 trials are successes when $p=0.6$, the formula would be:

BINOMDIST (7,10,0.6,TRUE)

The BINOMDIST Function

The compliment of the event " 7 successes or fewer in 10 trials"
is the event "at least 8 successes in 10 trials"

The BINOMDIST Function

The compliment of the event " 7 successes or fewer in 10 trials"
is the event "at least 8 successes in 10 trials"
To find the probability that at least 8 out of 10 trials are successes when $p=0.6$, the formula would be:
$=1-$ BINOMDIST (7, 10, 0.6,TRUE)

The BINOMDIST Function

The compliment of the event " 7 successes or fewer in 10 trials"
is the event "at least 8 successes in 10 trials"
To find the probability that at least 8 out of 10 trials are successes when $p=0.6$, the formula would be:
=1-BINOMDIST (7,10,0.6,TRUE)
To find the probability of at least 8 successes, we add the probabilities of $1,2,3, \ldots, 7$ successes and subtract the total from 1.

The BINOMDIST Function

In summary, for a binomial experiment with n trials and probability of success p, the probabilities of some common events are:

exactly k successes	= BINOMDIST (k, n, p, FALSE $)$
k or fewer successes	= BINOMDIST (k, $\mathrm{n}, \mathrm{p}, \mathrm{TRUE}$)
at least k successes	=1-BINOMDIST ($k-1, n, p, T R U E)$
more than k successes	=1-BINOMDIST ($k, n, p, T R U E)$
fewer than k successes	= BINOMDIST (k-1, $\mathrm{n}, \mathrm{p}, \mathrm{TRUE}$)
fewer than j or more than k successes	$\begin{aligned} =1 & +\operatorname{BINOMDIST}(j-1, n, p, T R U E) \\ & -\operatorname{BINOMDIST}(k, n, p, T R U E) \end{aligned}$
Between j and k successes (inclusive)	$\begin{aligned} = & \operatorname{BINOMDIST}(k, n, p, T R U E) \\ & -\operatorname{BINOMDIST}(j-1, n, p, T R U E) \end{aligned}$

Mean of a Binomial Random Variable

Suppose the criteria for a binomial probability experiment are met.

The possible outcomes of the experiment, and the probabilities associated with each outcome are completely determined by two numbers:

The number of trials in the experiment, denoted by n

Mean of a Binomial Random Variable

Suppose the criteria for a binomial probability experiment are met.

The possible outcomes of the experiment, and the probabilities associated with each outcome are completely determined by two numbers:

The number of trials in the experiment, denoted by n
The probability of success on each trial, denoted by p

Mean of a Binomial Random Variable

Example: Suppose the criteria for a binomial probability experiment are met, and we are told that the experiment consists of 6 trials, each with probability of success equal to 0.6 .

Mean of a Binomial Random Variable

Example: Suppose the criteria for a binomial probability experiment are met, and we are told that the experiment consists of 6 trials, each with probability of success equal to 0.6 .

Immediately, we know that the random variable X defined to be the number of successes obtained in the experiment must have one of the following values:

$$
0,1,2,3,4,5,6
$$

Mean of a Binomial Random Variable

Example: Suppose the criteria for a binomial probability experiment are met, and we are told that the experiment consists of 6 trials, each with probability of success equal to 0.6 .

Immediately, we know that the random variable X defined to be the number of successes obtained in the experiment must have one of the following values:

$$
0,1,2,3,4,5,6
$$

Furthermore, we know that for $k=0,1, \ldots, 6$, the probability that exactly k successes are obtained is given by the formula:

$$
P(X=k)={ }_{6} C_{k} \cdot p^{k}(1-p)^{n-k}
$$

Mean of a Binomial Random Variable

In particular, we know that:

- The probability of 0 successes is ${ }_{6} C_{0} \cdot(0.6)^{0}(0.4)^{6}$

Mean of a Binomial Random Variable

In particular, we know that:

- The probability of 0 successes is ${ }_{6} C_{0} \cdot(0.6)^{0}(0.4)^{6}$
- The probability of 1 success is ${ }_{6} C_{1} \cdot(0.6)^{1}(0.4)^{5}$

Mean of a Binomial Random Variable

In particular, we know that:

- The probability of 0 successes is ${ }_{6} C_{0} \cdot(0.6)^{0}(0.4)^{6}$
- The probability of 1 success is ${ }_{6} C_{1} \cdot(0.6)^{1}(0.4)^{5}$
- The probability of 2 successes is ${ }_{6} C_{2} \cdot(0.6)^{2}(0.4)^{4}$

Mean of a Binomial Random Variable

In particular, we know that:

- The probability of 0 successes is ${ }_{6} C_{0} \cdot(0.6)^{0}(0.4)^{6}$
- The probability of 1 success is ${ }_{6} C_{1} \cdot(0.6)^{1}(0.4)^{5}$
- The probability of 2 successes is ${ }_{6} C_{2} \cdot(0.6)^{2}(0.4)^{4}$
- The probability of 3 successes is ${ }_{6} C_{3} \cdot(0.6)^{3}(0.4)^{3}$

Mean of a Binomial Random Variable

In particular, we know that:

- The probability of 0 successes is ${ }_{6} C_{0} \cdot(0.6)^{0}(0.4)^{6}$
- The probability of 1 success is ${ }_{6} C_{1} \cdot(0.6)^{1}(0.4)^{5}$
- The probability of 2 successes is ${ }_{6} C_{2} \cdot(0.6)^{2}(0.4)^{4}$
- The probability of 3 successes is ${ }_{6} C_{3} \cdot(0.6)^{3}(0.4)^{3}$
- The probability of 4 successes is ${ }_{6} C_{4} \cdot(0.6)^{4}(0.4)^{2}$

Mean of a Binomial Random Variable

In particular, we know that:

- The probability of 0 successes is ${ }_{6} C_{0} \cdot(0.6)^{0}(0.4)^{6}$
- The probability of 1 success is ${ }_{6} C_{1} \cdot(0.6)^{1}(0.4)^{5}$
- The probability of 2 successes is ${ }_{6} C_{2} \cdot(0.6)^{2}(0.4)^{4}$
- The probability of 3 successes is ${ }_{6} C_{3} \cdot(0.6)^{3}(0.4)^{3}$
- The probability of 4 successes is ${ }_{6} C_{4} \cdot(0.6)^{4}(0.4)^{2}$
- The probability of 5 successes is ${ }_{6} C_{5} \cdot(0.6)^{5}(0.4)^{1}$

Mean of a Binomial Random Variable

In particular, we know that:

- The probability of 0 successes is ${ }_{6} C_{0} \cdot(0.6)^{0}(0.4)^{6}$
- The probability of 1 success is ${ }_{6} C_{1} \cdot(0.6)^{1}(0.4)^{5}$
- The probability of 2 successes is ${ }_{6} C_{2} \cdot(0.6)^{2}(0.4)^{4}$
- The probability of 3 successes is ${ }_{6} C_{3} \cdot(0.6)^{3}(0.4)^{3}$
- The probability of 4 successes is ${ }_{6} C_{4} \cdot(0.6)^{4}(0.4)^{2}$
- The probability of 5 successes is ${ }_{6} C_{5} \cdot(0.6)^{5}(0.4)^{1}$
- The probability of 6 successes is ${ }_{6} C_{6} \cdot(0.6)^{6}(0.4)^{0}$

Means and Standard Deviations

If we think of a large collection of binomial experiments producing a population of outcomes, the population mean μ_{X} will be given by the formula:

$$
\mu_{X}=n p
$$

Means and Standard Deviations

If we think of a large collection of binomial experiments producing a population of outcomes, the population mean μ_{X} will be given by the formula:

$$
\mu_{X}=n p
$$

The population standard deviation σ_{X} is given by the formula:

$$
\sigma_{X}=\sqrt{n \cdot p \cdot(1-p)}
$$

Means and Standard Deviations

Example: If X represents the number of successes in 100 trials in a binomial experiment with probability of success equal to 0.6 , what is the mean μ_{X} and standard deviation σ_{X} of X ?

Means and Standard Deviations

Example: If X represents the number of successes in 100 trials in a binomial experiment with probability of success equal to 0.6 , what is the mean μ_{X} and standard deviation σ_{X} of X ?

The mean μ_{X} is given by

$$
\mu_{X}=n \cdot p=100 \cdot 0.6=60
$$

Means and Standard Deviations

Example: If X represents the number of successes in 100 trials in a binomial experiment with probability of success equal to 0.6 , what is the mean μ_{X} and standard deviation σ_{X} of X ?

The mean μ_{X} is given by

$$
\mu_{X}=n \cdot p=100 \cdot 0.6=60
$$

The standard deviation σ_{X} is given by

$$
\sigma_{X}=\sqrt{n \cdot p \cdot(1-p)}=\sqrt{100 \cdot 0.6 \cdot 0.4}=4.90
$$

Means, Standard Deviations, and the E

One of the properties of the binomial probability distribution is that the distribution is bell shaped when n is reasonably large.

Means, Standard Deviations, and the E

One of the properties of the binomial probability distribution is that the distribution is bell shaped when n is reasonably large.

How large is a "reasonably large" value of n ? It depends on p.

A commonly used rule of thumb states that the binomial distribution will be approximately bell shaped provided that

$$
n \geq \frac{10}{p \cdot(1-p)}
$$

Means, Standard Deviations, and the E

Earlier we found that for a binomial experiment with 100 trials each having a probability of 0.6 of success, the mean and standard deviation were:

$$
\mu_{X}=60 \quad \text { and } \quad \sigma_{X}=\sqrt{100 \cdot 0.6 \cdot 0.4}=4.90
$$

Means, Standard Deviations, and the E

Earlier we found that for a binomial experiment with 100 trials each having a probability of 0.6 of success, the mean and standard deviation were:

$$
\mu_{X}=60 \quad \text { and } \quad \sigma_{X}=\sqrt{100 \cdot 0.6 \cdot 0.4}=4.90
$$

$n=100$ is more than adequate to satisfy the rule of thumb stating that n should be greater than or equal to $10 /(p \cdot(1-p))$, so the empirical rule tells us that:

- approximately 68% of the time X will fall in the range 55.1 to 64.9
- approximately 95% of the time X will fall in the range 50.2 to 69.8

Means, Standard Deviations, and the E

Earlier we found that for a binomial experiment with 100 trials each having a probability of 0.6 of success, the mean and standard deviation were:

$$
\mu_{X}=60 \quad \text { and } \quad \sigma_{X}=\sqrt{100 \cdot 0.6 \cdot 0.4}=4.90
$$

$n=100$ is more than adequate to satisfy the rule of thumb stating that n should be greater than or equal to $10 /(p \cdot(1-p))$, so the empirical rule tells us that:

- approximately 68% of the time X will fall in the range 55.1 to 64.9
- approximately 95% of the time X will fall in the range 50.2 to 69.8
- approximately 99.7% of the time X will fall in the range 45.3 to 74.7

Means, Standard Deviations, and the E

Earlier we found that for a binomial experiment with 100 trials each having a probability of 0.6 of success, the mean and standard deviation were:

$$
\mu_{X}=60 \quad \text { and } \quad \sigma_{X}=\sqrt{100 \cdot 0.6 \cdot 0.4}=4.90
$$

$n=100$ is more than adequate to satisfy the rule of thumb stating that n should be greater than or equal to $10 /(p \cdot(1-p))$, so the empirical rule tells us that:

- approximately 68% of the time X will fall in the range 55.1 to 64.9
- approximately 95% of the time X will fall in the range 50.2 to 69.8
- approximately 99.7% of the time X will fall in the range 45.3 to 74.7

Means, Standard Deviations, and the E

Earlier we found that for a binomial experiment with 100 trials each having a probability of 0.6 of success, the mean and standard deviation were:

$$
\mu_{X}=60 \quad \text { and } \quad \sigma_{X}=\sqrt{100 \cdot 0.6 \cdot 0.4}=4.90
$$

$n=100$ is more than adequate to satisfy the rule of thumb stating that n should be greater than or equal to $10 /(p \cdot(1-p))$, so the empirical rule tells us that:

- approximately 68% of the time X will fall in the range 55.1 to 64.9
- approximately 95% of the time X will fall in the range 50.2 to 69.8
- approximately 99.7% of the time X will fall in the range 45.3 to 74.7

