Bell Curves for Sample Proportions

Gene Quinn

Sample Proportions

Often a sample is taken to determine the proportion of a population that has a certain characteristic.
Suppose the proportion of the population that has the characteristic is p.

Sample Proportions

Often a sample is taken to determine the proportion of a population that has a certain characteristic.
Suppose the proportion of the population that has the characteristic is p.
In this case, the proportion of individuals in the sample can be approximated by a bell curve distribution with:

- mean p
- standard deviation $\sqrt{\frac{p(1-p)}{n}}$

Sample Proportions

Often a sample is taken to determine the proportion of a population that has a certain characteristic.
Suppose the proportion of the population that has the characteristic is p.
In this case, the proportion of individuals in the sample can be approximated by a bell curve distribution with:

- mean p
- standard deviation $\sqrt{\frac{p(1-p)}{n}}$

This means we can use the NORMDIST function exactly as we did for populations and sample means.

Example

The proportion of the human population that has Type A blood is 40 percent.

If a sample of 75 individuals is taken, the distribution of the sample proportion \bar{x},

Number of Individuals with Type A Blood $=\frac{x}{n}$
Number of Individuals in Sample $=\frac{}{n}$

Example

The proportion of the human population that has Type A blood is 40 percent.

If a sample of 75 individuals is taken, the distribution of the sample proportion \bar{x},

$\underline{\text { Number of Individuals with Type A Blood }}=\underline{x}$
 Number of Individuals in Sample $=\frac{}{n}$

The sample proportion \bar{x} has a bell curve distribution (approximately) with:
mean $=0.4$ standard deviation $=\sqrt{\frac{(0.4)(1-0.4)}{75}}=.0566$

Example

The proportion of the human population is 40 percent. A sample of 75 individuals is taken.

What proportion of the time will the sample contain 33 or fewer individuals with Type A blood?

Example

The proportion of the human population is 40 percent. A sample of 75 individuals is taken.

What proportion of the time will the sample contain 33 or fewer individuals with Type A blood?
If we have 33 or fewer individuals with Type A blood, the sample proportion \bar{x} must be at most:

$$
\bar{x}=\frac{33}{75}=.44
$$

Example

The proportion of the human population is 40 percent. A sample of 75 individuals is taken.

What proportion of the time will the sample contain 33 or fewer individuals with Type A blood?
If we have 33 or fewer individuals with Type A blood, the sample proportion \bar{x} must be at most:

$$
\bar{x}=\frac{33}{75}=.44
$$

So we want the proportion of a bell curve population with a mean of 0.40 and a standard deviation of 0.0566 that lies below 0.44 , which is:
$=$ NORMDIST $(0.44,0.40,0.0566$, true $)=0.76$

Example

In general, suppose:

- The actual population proportion with some characteristic is p
- The sample size is n
- We want the proportion of samples with x or fewer individuals that have the characteristic

Example

In general, suppose:

- The actual population proportion with some characteristic is p
- The sample size is n
- We want the proportion of samples with x or fewer individuals that have the characteristic

In this case, the proportion of samples that will have x or fewer individuals with the characteristic is:
$=$ NORMDIST($x / n, p, S Q R T\left(p^{*}(1-p) / n\right)$,true $)$

Example

In human populations, the proportion with Type O blood is 45 percent.

Find the proportion of samples of size 100 that contain 40 or fewer individuals with Type O blood.

Example

In human populations, the proportion with Type O blood is 45 percent.

Find the proportion of samples of size 100 that contain 40 or fewer individuals with Type O blood.
In this case,

- The population proportion p is 0.45
- The sample size n is 100
- The number of individuals in the sample with Type O blood is $x=40$

Example

In human populations, the proportion with Type O blood is 45 percent.

Find the proportion of samples of size 100 that contain 40 or fewer individuals with Type O blood.
In this case,

- The population proportion p is 0.45
- The sample size n is 100
- The number of individuals in the sample with Type O blood is $x=40$

Then the proportion is given by the formula:
$=$ NORMDIST(40/100,0.45,SQRT(0.4*(1-0.4)/100),true)

