Bernoulli Random Variables

Recall that a Bernoulli random variable is a random variable whose only possible values are 0 and 1.

Bernoulli Random Variables

Recall that a Bernoulli random variable is a random variable whose only possible values are 0 and 1 .

In general we can consider a Bernoulli random variable to be the result of an experiment with two outcomes, which for convenience we will label "success" and "failure"

Bernoulli Random Variables

Recall that a Bernoulli random variable is a random variable whose only possible values are 0 and 1.

In general we can consider a Bernoulli random variable to be the result of an experiment with two outcomes, which for convenience we will label "success" and "failure"

As before we define the Bernoulli random variable X by agreeing to assign the value of 1 to X if the result of the experiment is "success", and zero if the result is "failure":
$X= \begin{cases}1 & \text { if the outcome of the experiment is "success" } \\ 0 & \text { if the outcome of the experiment is "failure" }\end{cases}$

Discrete Distributions

Now we will consider is the Poisson distribution.

Discrete Distributions

Now we will consider is the Poisson distribution.
The Poisson is a limiting form of the binomial distribution that you get if you let n become very large and the probability of success p very small, but always keep $n p=l$ the same.

Discrete Distributions

Now we will consider is the Poisson distribution.
The Poisson is a limiting form of the binomial distribution that you get if you let n become very large and the probability of success p very small, but always keep $n p=l$ the same.

Another way to say this is that we take binomial random variables with larger and larger n, but we keep the expected number of successes $n p=l$ the same for all of them.

Discrete Distributions

Now we will consider is the Poisson distribution.
The Poisson is a limiting form of the binomial distribution that you get if you let n become very large and the probability of success p very small, but always keep $n p=l$ the same.

Another way to say this is that we take binomial random variables with larger and larger n, but we keep the expected number of successes $n p=l$ the same for all of them.
The limit of the distribution of such a sequence of random variables as $n \rightarrow \infty$ is a Poisson.

The Poisson Distribution

The mean or expected value of a Poisson random variable with parameter l is:

$$
\mu=E(X)=l
$$

The Poisson Distribution

The mean or expected value of a Poisson random variable with parameter l is:

$$
\mu=E(X)=l
$$

The variance of a Poisson random variable with parameter l is:

$$
\sigma^{2}=V(X)=l
$$

The Poisson Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a Poisson experiment with mean 4:
$\mathrm{x}<-\mathrm{rpois}(1000000,4)$

The Poisson Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a Poisson experiment with mean 4:
x<-rpois (1000000,4)
Now plot a histogram of the results:
hist(x)

The Poisson Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a Poisson experiment with mean 4:
$\mathrm{x}<-\mathrm{rpois}(1000000,4)$
Now plot a histogram of the results:
hist(x)
To get a table of the results enter
table(x)

The Poisson Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a Poisson experiment with mean 4 :
x<-rpois (1000000,4)
Now plot a histogram of the results:
hist(x)
To get a table of the results enter
table(x)
The results through $X=6$ should look something like:

0	1	2	3	4	5	
18371	73359	146588	195040	195902	155639	$1040 ؛$

The Poisson Distribution

$\begin{array}{lllllll}18371 & 73359 & 146588 & 195040 & 195902 & 155639 & 1040\end{array}$ Now compare the frequencies to the probabilities.
First compute the probability that $X=0$:
dpois (0,4)

The Poisson Distribution

$\begin{array}{lllllll}18371 & 73359 & 146588 & 195040 & 195902 & 155639 & 1040\end{array}$ Now compare the frequencies to the probabilities.
First compute the probability that $X=0$:
dpois $(0,4)$
The result should be something like

$$
\text { [1] } 0.01831564
$$

The Poisson Distribution

$1837173359146588 \quad 195040 \quad 1959021556391040 ؛$ Now compare the frequencies to the probabilities.
First compute the probability that $X=0$:
dpois $(0,4)$
The result should be something like

$$
\text { [1] } 0.01831564
$$

To get the probability that $X=1$ enter
dpois(1,4)

The Poisson Distribution

$1837173359146588 \quad 195040 \quad 1959021556391040$ ؛ Now compare the frequencies to the probabilities.
First compute the probability that $X=0$:
dpois $(0,4)$
The result should be something like

$$
\text { [1] } 0.01831564
$$

To get the probability that $X=1$ enter
dpois (1,4)
This time the results should look something like:

$$
\text { [1] } 0.07326256
$$

The Poisson Distribution

0	1	2	3	4	5
18371	73359	146588	195040	195902	155639
1040					
Next compute the probability that $X=3:$					

dpois (3,4)

The Poisson Distribution

$1837173359146588195040 \quad 1959021556391040$ ؛ Next compute the probability that $X=3$:
dpois (3,4)
The result should be something like
[1] 0.1953668

The Poisson Distribution

$1837173359146588195040 \quad 1959021556391040$ ؛ Next compute the probability that $X=3$:
dpois (3,4)
The result should be something like
[1] 0.1953668
To get the probability that $X=5$ enter
dpois (5,4)

The Poisson Distribution

$1837173359146588195040 \quad 1959021556391040 ؛$ Next compute the probability that $X=3$:
dpois (3,4)
The result should be something like
[1] 0.1953668
To get the probability that $X=5$ enter
dpois (5,4)
This time the results should look something like:
[1] 0.1562935

The Poisson Distribution

The expected value $E(X)$ in this case is:

$$
E(X)=l=4
$$

The Poisson Distribution

The expected value $E(X)$ in this case is:

$$
E(X)=l=4
$$

To compute the sample mean \bar{x}, enter mean (x)

The Poisson Distribution

The expected value $E(X)$ in this case is:

$$
E(X)=l=4
$$

To compute the sample mean \bar{x}, enter mean (x) The result should be something like [1] 4.000327

The Poisson Distribution

The variance $V(X)$ in this case is:

$$
V(X)=l=4
$$

The Poisson Distribution

The variance $V(X)$ in this case is:

$$
V(X)=l=4
$$

To compute the sample variance s^{2}, enter var(x)

The Poisson Distribution

The variance $V(X)$ in this case is:

$$
V(X)=l=4
$$

To compute the sample variance s^{2}, enter var (x) The result should be something like
[1] 4.009417

The Poisson Distribution

The number of cars arriving at a toll booth per minute has a Poisson distribution with $l=4.6$.

Find the probability that in a given minute exactly 4 cars arrive at the toll booth.

The Poisson Distribution

The number of cars arriving at a toll booth per minute has a Poisson distribution with $l=4.6$.

Find the probability that in a given minute exactly 4 cars arrive at the toll booth.

Solution: 0.1875277

The Poisson Distribution

The number of cars arriving at a toll booth per minute has a Poisson distribution with $l=4.6$.

Find the probability that in a given minute exactly 4 cars arrive at the toll booth.

Solution: 0.1875277
dpois(4,4.6)

The Poisson Distribution

The number of cars arriving at a toll booth per minute has a Poisson distribution with $l=4.6$.

Find the probability that in a given minute 4 or fewer cars arrive at the toll booth.

The Poisson Distribution

The number of cars arriving at a toll booth per minute has a Poisson distribution with $l=4.6$.

Find the probability that in a given minute 4 or fewer cars arrive at the toll booth.

Solution: 0.513234

The Poisson Distribution

The number of cars arriving at a toll booth per minute has a Poisson distribution with $l=4.6$.

Find the probability that in a given minute 4 or fewer cars arrive at the toll booth.

Solution: 0.513234
ppois(4,4.6)

The Poisson Distribution

The number of cars arriving at a toll booth per minute has a Poisson distribution with $l=4.6$.

Find the probability that in a given minute more than 8 cars arrive at the toll booth.

The Poisson Distribution

The number of cars arriving at a toll booth per minute has a Poisson distribution with $l=4.6$.

Find the probability that in a given minute more than 8 cars arrive at the toll booth.

Solution: 0.04507196

The Poisson Distribution

The number of cars arriving at a toll booth per minute has a Poisson distribution with $l=4.6$.

Find the probability that in a given minute more than 8 cars arrive at the toll booth.

Solution: 0.04507196
1-ppois (8, 4.6)

The Poisson Distribution

The number of cars arriving at a toll booth per minute has a Poisson distribution with $l=4.6$.

Find the probability that in a given minute between 3 and 5 cars arrive at the toll booth.

The Poisson Distribution

The number of cars arriving at a toll booth per minute has a Poisson distribution with $l=4.6$.

Find the probability that in a given minute between 3 and 5 cars arrive at the toll booth.

Solution: 0.5231208

The Poisson Distribution

The number of cars arriving at a toll booth per minute has a Poisson distribution with $l=4.6$.

Find the probability that in a given minute between 3 and 5 cars arrive at the toll booth.

Solution: 0.5231208
ppois (5,4.6)-ppois (3-1,4.6)

The Poisson Distribution

The number of deer ticks in a square yard of forest floor has a Poisson distribution with a mean of 12 .

Find the probability that a randomly chosen square yard contains more than 10 deer ticks.

The Poisson Distribution

The number of deer ticks in a square yard of forest floor has a Poisson distribution with a mean of 12 .

Find the probability that a randomly chosen square yard contains more than 10 deer ticks.

Solution: 0.7576078

The Poisson Distribution

The number of deer ticks in a square yard of forest floor has a Poisson distribution with a mean of 12 .

Find the probability that a randomly chosen square yard contains more than 10 deer ticks.

Solution: 0.7576078
1-ppois (10-1,12)

