The General Normal Distribution

Gene Quinn

The Standard Normal Distribution

So far we have considered the standard normal distribution, which is a normal distribution that has mean zero and standard deviation 1.

The Standard Normal Distribution

So far we have considered the standard normal distribution, which is a normal distribution that has mean zero and standard deviation 1.

The standard normal distribution is the one that is usually represented as a table.

The Standard Normal Distribution

So far we have considered the standard normal distribution, which is a normal distribution that has mean zero and standard deviation 1.

The standard normal distribution is the one that is usually represented as a table.

Various standard normal probabilities can be computed with the NORMDSIST function

The General Normal Distribution

Most of the time we are working with a bell curve that is not a standard normal distribution.

The General Normal Distribution

Most of the time we are working with a bell curve that is not a standard normal distribution.

The mean of a general normal distribution can be any real number.

The General Normal Distribution

Most of the time we are working with a bell curve that is not a standard normal distribution.

The mean of a general normal distribution can be any real number.

The standard deviation of a general normal distribution can be any positive number.

The General Normal Distribution

Most of the time we are working with a bell curve that is not a standard normal distribution.

The mean of a general normal distribution can be any real number.

The standard deviation of a general normal distribution can be any positive number.

Henceforth, we will drop the word "general" and "normal distribution" will mean a normal or bellcurve distribution with arbitrary mean and standard deviation.

The Normal Distribution

As before, the proportion of the population to the left of a given value is equal to the area under the curve from that point left.

The Normal Distribution

As before, the proportion of the population to the left of a given value is equal to the area under the curve from that point left.

The Normal Distribution

As before, it is impossible to give an exact formula for the area to the left of a given point.

The Normal Distribution

As before, it is impossible to give an exact formula for the area to the left of a given point.

The spreadsheet function for computing this numerically is called NORMDIST

The Normal Distribution

As before, it is impossible to give an exact formula for the area to the left of a given point.

The spreadsheet function for computing this numerically is called NORMDIST

The Normal Distribution

The NORMSDIST function takes four arguments

The Normal Distribution

The NORMSDIST function takes four arguments
The first is the value of X, the point on the horizontal axis (just like NORMSDIST)

The Normal Distribution

The NORMSDIST function takes four arguments
The first is the value of X, the point on the horizontal axis (just like NORMSDIST)
The second and third are the mean and standard deviation.
We have to supply these because they are no longer assumend to be zero and one.

The Normal Distribution

The NORMSDIST function takes four arguments
The first is the value of X, the point on the horizontal axis (just like NORMSDIST)

The second and third are the mean and standard deviation.
We have to supply these because they are no longer assumend to be zero and one.

The last argument will always be "TRUE" in our applications.

The Normal Distribution

The NORMSDIST function takes four arguments
The first is the value of X, the point on the horizontal axis (just like NORMSDIST)
The second and third are the mean and standard deviation.
We have to supply these because they are no longer assumend to be zero and one.

The last argument will always be "TRUE" in our applications.
=NORMDIST(X,mean,stdev,TRUE)

The Normal Distribution

=NORMDIST(X,mean,stdev,TRUE)

The Normal Distribution

=NORMDIST(X,mean,stdev,TRUE)

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores less than 110 on an IQ test.

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores less than 110 on an IQ test.

Enter =NORMSDIST(110,100,15,TRUE)

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores less than 110 on an IQ test.

Enter =NORMSDIST(110,100,15,TRUE)

The result is 0.748

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores less than 110 on an IQ test.

Enter =NORMSDIST(110,100,15,TRUE)

The result is 0.748
This means that 74.8 percent of individuals score less than 110 on an IQ test.

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores less than 110 on an IQ test.

Enter =NORMSDIST(110,100,15,TRUE)

The result is 0.748
This means that 74.8 percent of individuals score less than 110 on an IQ test.

It also means that a randomly selected individual has a probability of 0.748 of scoring less than 110 .

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores less than 95 on an IQ test.

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores less than 95 on an IQ test.

Enter =NORMSDIST(110,100,15,TRUE)

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores less than 95 on an IQ test.

Enter =NORMSDIST(110,100,15,TRUE)

The result is 0.369

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores less than 95 on an IQ test.

Enter =NORMSDIST(110,100,15,TRUE)

The result is 0.369
This means that 36.9 percent of individuals score less than 110 on an IQ test.

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores less than 95 on an IQ test.

Enter =NORMSDIST(110,100,15,TRUE)

The result is 0.369
This means that 36.9 percent of individuals score less than 110 on an IQ test.

It also means that a randomly selected individual has a probability of 0.369 of scoring less than 95 .

Example: Normal Distribution

The SAT is designed so that the mean of the scores is 500 and the standard deviation is 100 .

Find the probability that a randomly selected individual scores less than 600 on the SAT.

Example: Normal Distribution

The SAT is designed so that the mean of the scores is 500 and the standard deviation is 100 .

Find the probability that a randomly selected individual scores less than 600 on the SAT.

Enter =NORMSDIST(110,100,15,TRUE)

Example: Normal Distribution

The SAT is designed so that the mean of the scores is 500 and the standard deviation is 100 .

Find the probability that a randomly selected individual scores less than 600 on the SAT.

Enter =NORMSDIST(110,100,15,TRUE)

The result is 0.841

Example: Normal Distribution

The SAT is designed so that the mean of the scores is 500 and the standard deviation is 100 .

Find the probability that a randomly selected individual scores less than 600 on the SAT.

Enter =NORMSDIST(110,100,15,TRUE)

The result is 0.841
This means that 84.1 percent of individuals score less than 600 on an SAT test.

Example: Normal Distribution

The SAT is designed so that the mean of the scores is 500 and the standard deviation is 100 .

Find the probability that a randomly selected individual scores less than 600 on the SAT.

Enter =NORMSDIST(110,100,15,TRUE)

The result is 0.841
This means that 84.1 percent of individuals score less than 600 on an SAT test.

It also means that a randomly selected individual has a probability of 0.841 of scoring less than 600 .

Example: Normal Distribution

Find the proportion of a normal population with mean 50 and standard deviation 10 that is less than 35.

Example: Normal Distribution

Find the proportion of a normal population with mean 50 and standard deviation 10 that is less than 35.

Enter =NORMSDIST(35,50,10,TRUE). The result is 0.067

Example: Normal Distribution

Find the proportion of a normal population with mean -40 and standard deviation 25 that is less than zero.

Example: Normal Distribution

Find the proportion of a normal population with mean -40 and standard deviation 25 that is less than zero.

Enter =NORMSDIST(0,-40,25,TRUE). The result is 0.945

The Normal Distribution

Sometimes we are interested in the probability that an observation from a normal population is greater than a given value.

The Normal Distribution

Sometimes we are interested in the probability that an observation from a normal population is greater than a given value.

The area to the right of x is given by =1-NORMDIST(x,mean,stdev,TRUE)

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores higher than 110 on an IQ test.

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores higher than 110 on an IQ test.

Enter =1-NORMSDIST(110,100,15,TRUE)

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores higher than 110 on an IQ test.

Enter $=\mathbf{1 - N O R M S D I S T}(110,100,15, T R U E)$
The result is 0.252

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores higher than 110 on an IQ test.

Enter =1-NORMSDIST(110,100,15,TRUE)

The result is 0.252
This means that 25.2 percent of individuals score higher than 110 on an IQ test.

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores higher than 110 on an IQ test.

Enter $=\mathbf{1 - N O R M S D I S T (1 1 0 , 1 0 0 , 1 5 , T R U E)}$

The result is 0.252
This means that 25.2 percent of individuals score higher than 110 on an IQ test.

It also means that a randomly selected individual has a probability of 0.252 of scoring higher than 110 .

The Normal Distribution

Sometimes we are interested in the probability that an observation from a normal population is between two given values.

The Normal Distribution

Sometimes we are interested in the probability that an observation from a normal population is between two given values.

The area between a and b is given by =NORMSDIST(b,mean,stdev,TRUE)NORMSDIST(a,mean,stdev,TRUE)

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores between 100 and 110 on an IQ test.

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores between 100 and 110 on an IQ test.

Enter =NORMSDIST(110,100,15,TRUE)NORMSDIST(100,100,15,TRUE)

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores between 100 and 110 on an IQ test.

Enter =NORMSDIST(110,100,15,TRUE)NORMSDIST(100,100,15,TRUE)

The result is 0.248

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores between 100 and 110 on an IQ test.

Enter =NORMSDIST(110,100,15,TRUE)NORMSDIST(100,100,15,TRUE)

The result is 0.248
This means that 24.8 percent of individuals score higher between 100 and 110 on an IQ test.

Example: Normal Distribution

IQ tests are designed so that the mean of the scores is 100 and the standard deviation is 15 .

Find the probability that a randomly selected individual scores between 100 and 110 on an IQ test.

Enter =NORMSDIST(110,100,15,TRUE)NORMSDIST(100,100,15,TRUE)

The result is 0.248
This means that 24.8 percent of individuals score higher between 100 and 110 on an IQ test.

It also means that a randomly selected individual has a probability of 0.248 of scoring between 100 and 110 .

Example: Normal Distribution

Find the probability that in individual from a normal population with mean 200 and standard deviation 50 lies between 180 and 220.

Example: Normal Distribution

Find the probability that in individual from a normal population with mean 200 and standard deviation 50 lies between 180 and 220 .

Enter =NORMSDIST(220,200,50,TRUE)NORMSDIST(180,200,50,TRUE)

Example: Normal Distribution

Find the probability that in individual from a normal population with mean 200 and standard deviation 50 lies between 180 and 220 .

Enter =NORMSDIST(220,200,50,TRUE)NORMSDIST(180,200,50,TRUE)

The result is 0.311

Example: Normal Distribution

Find the probability that in individual from a normal population with mean 200 and standard deviation 50 lies between 180 and 220 .

Enter =NORMSDIST(220,200,50,TRUE)NORMSDIST(180,200,50,TRUE)

The result is 0.311
This means that 31.1 percent of individuals lie between 180 and 220 .

Example: Normal Distribution

Find the probability that in individual from a normal population with mean 200 and standard deviation 50 lies between 180 and 220.

Enter =NORMSDIST(220,200,50,TRUE)NORMSDIST(180,200,50,TRUE)

The result is 0.311
This means that 31.1 percent of individuals lie between 180 and 220 .

It also means that a randomly selected individual has a probability of 0.311 of scoring between 180 and 220 .

Example: Normal Distribution

SAT scores are distributed normally with mean 500 and standard deviation 100.

Find the proportion of the population that scores between 450 and 600.

Example: Normal Distribution

SAT scores are distributed normally with mean 500 and standard deviation 100.

Find the proportion of the population that scores between 450 and 600. Enter =NORMSDIST(600,500,100,TRUE)NORMSDIST(450,500,100,TRUE)

Example: Normal Distribution

SAT scores are distributed normally with mean 500 and standard deviation 100.

Find the proportion of the population that scores between 450 and 600. Enter =NORMSDIST(600,500,100,TRUE)NORMSDIST(450,500,100,TRUE)

The result is 0.533

Example: Normal Distribution

SAT scores are distributed normally with mean 500 and standard deviation 100.

Find the proportion of the population that scores between 450 and 600. Enter =NORMSDIST(600,500,100,TRUE)NORMSDIST(450,500,100,TRUE)

The result is 0.533
This means that 53.3 percent of the population scores between 450 and 600 .

Example: Normal Distribution

SAT scores are distributed normally with mean 500 and standard deviation 100.

Find the proportion of the population that scores between 450 and 600. Enter =NORMSDIST(600,500,100,TRUE)NORMSDIST(450,500,100,TRUE)

The result is 0.533
This means that 53.3 percent of the population scores between 450 and 600 .

It also means that an individual selected randomly has a probability of 0.533 of scoring between 450 and 600 .

The Normal Distribution

Finally, we may be interested in the probability that an observation from a normal population is outside the interval between two given values.

The Normal Distribution

Finally, we may be interested in the probability that an observation from a normal population is outside the interval between two given values.

The area outside the interval between a and b is given by $=1$ -
NORMDIST(b,mean,stdev,TRUE)+NORMSDIST(a,mean,std

Example: Standard Normal Distributio

Find the proportion of the population that scores less than 450 or greater than 600 on the SAT (mean=500, stdev=100).

Example: Standard Normal Distributio

Find the proportion of the population that scores less than 450 or greater than 600 on the SAT (mean=500, $s t d e v=100$).

Enter =1-
NORMDIST(600,500,100,TRUE)+NORMSDIST(450,500,100,1

Example: Standard Normal Distributio

Find the proportion of the population that scores less than 450 or greater than 600 on the SAT (mean=500, $s t d e v=100$).

Enter =1-
NORMDIST(600,500,100,TRUE)+NORMSDIST(450,500,100,1
The result is 0.467

Example: Standard Normal Distributio

Find the proportion of the population that scores less than 450 or greater than 600 on the SAT (mean=500, $s t d e v=100$).

Enter =1-
NORMDIST(600,500,100,TRUE)+NORMSDIST(450,500,100,1
The result is 0.467
This means that 46.7 percent of the population scores less than 450 or greater than 600 .

Example: Standard Normal Distributio

Find the proportion of the population that scores less than 450 or greater than 600 on the SAT (mean=500, $s t d e v=100$).

Enter =1-
NORMDIST(600,500,100,TRUE)+NORMSDIST(450,500,100,1
The result is 0.467
This means that 46.7 percent of the population scores less than 450 or greater than 600 .

It also means that an individual selected randomly has a probability of 0.467 of scoring less than 450 or greater than 600.

Percentiles

Now consider the opposite problem. Suppose we want to find the value x with the property that a given proportion of a standard normal population is less than x.

Percentiles

Now consider the opposite problem. Suppose we want to find the value x with the property that a given proportion of a standard normal population is less than x.

This is the same as finding percentiles of the standard normal distribution.

Percentiles

Now consider the opposite problem. Suppose we want to find the value x with the property that a given proportion of a standard normal population is less than x.

This is the same as finding percentiles of the standard normal distribution.

The function NORMSINV(p) takes a proportion p, and returns the value x with the property that p is the proportion of a standard normal population that is less than x.

Percentiles

Example: Find the value x with the the property that 74 percent of SAT scores are less than x

Percentiles

Example: Find the value x with the the property that 74 percent of SAT scores are less than x

Solution: Enter =NORMINV(0.74,500,100)

Percentiles

Example: Find the value x with the the property that 74 percent of SAT scores are less than x

Solution: Enter =NORMINV(0.74,500,100)

The result is 564.33 , which means that 74 percent of SAT scores are less than 564.

Percentiles

Example: Find the value x with the the property that 50 percent of a normal population with mean 75 and standard deviation 5 is less than x

Percentiles

Example: Find the value x with the the property that 50 percent of a normal population with mean 75 and standard deviation 5 is less than x

Solution: Enter =NORMINV(0.50,75,5))

Percentiles

Example: Find the value x with the the property that 50 percent of a normal population with mean 75 and standard deviation 5 is less than x

Solution: Enter =NORMINV(0.50,75,5))

The result is 75 , which means that 50 percent of the population is less than 75 .

Percentiles

Example: Find the value x with the the property that 50 percent of a normal population with mean 75 and standard deviation 5 is less than x

Solution: Enter =NORMINV(0.50,75,5))

The result is 75 , which means that 50 percent of the population is less than 75 .

This agrees with the fact that the normal distribution is symmetric about its mean.

Percentiles

Example: Find the $25^{\text {th }}$ percentile of the distribution of IQ scores (mean=100, stdev=15)

Percentiles

Example: Find the $25^{\text {th }}$ percentile of the distribution of IQ scores (mean=100, stdev=15)
Solution: Enter $=$ NORMINV(0.25,100,15)

Percentiles

Example: Find the $25^{\text {th }}$ percentile of the distribution of IQ scores (mean=100, stdev=15)

Solution: Enter $=$ NORMINV $(0.25,100,15)$
The result is 89.88 , which means that 25 percent of a standard normal population is less than 90 .

Percentiles

Example: Find the $90^{\text {th }}$ percentile of SAT scores (mean=500, stdev=100)

Percentiles

Example: Find the $90^{\text {th }}$ percentile of SAT scores (mean=500, stdev=100)

Solution: Enter =NORMINV(0.90,500,100)

Percentiles

Example: Find the $90^{\text {th }}$ percentile of SAT scores (mean=500, stdev=100)

Solution: Enter =NORMINV(0.90,500,100)
The result is 628.15 , which means that 90 percent of people score less than 629.

