The Normal or Bellcurve Distribution

Gene Quinn

The Normal Distribution

The most important probability distribution in statistics is the normal or bellcurve distribution.

The Normal Distribution

The most important probability distribution in statistics is the normal or bellcurve distribution.

The Normal Distribution

The bellcurve distribution extends infinitely in both directions.

The Normal Distribution

The bellcurve distribution extends infinitely in both directions.

The area under the bellcurve is one.

The Normal Distribution

The bellcurve distribution extends infinitely in both directions.

The area under the bellcurve is one.

The Normal Distribution

The shape of the bellcurve is determined by two parameters: the mean and the standard deviation.

The Normal Distribution

The shape of the bellcurve is determined by two parameters: the mean and the standard deviation.

A bellcurve with mean 0 and standard deviation 1 is called a standard normal distribution.

The Normal Distribution

The shape of the bellcurve is determined by two parameters: the mean and the standard deviation.

A bellcurve with mean 0 and standard deviation 1 is called a standard normal distribution.

The Normal Distribution

The proportion of the population to the left of a given value is equal to the area under the curve from that point left.

The Normal Distribution

The proportion of the population to the left of a given value is equal to the area under the curve from that point left.

The Normal Distribution

It is impossible to give an exact formula for the area to the left of a given point. However, it is possible to compute it numerically.

The Normal Distribution

It is impossible to give an exact formula for the area to the left of a given point. However, it is possible to compute it numerically.

The spreadsheet function for this is called NORMSDIST

The Normal Distribution

It is impossible to give an exact formula for the area to the left of a given point. However, it is possible to compute it numerically.

The spreadsheet function for this is called NORMSDIST

The Normal Distribution

The NORMSDIST function takes a single argument, call it z.

The Normal Distribution

The NORMSDIST function takes a single argument, call it z.
The area to the left of z is given by =NORMSDIST(\mathbf{z})

The Normal Distribution

The NORMSDIST function takes a single argument, call it z.
The area to the left of z is given by $=$ NORMSDIST(\mathbf{z})

Example: Standard Normal Distributic

Find the proportion of a standard normal population that is less than 1.5.

Example: Standard Normal Distributi

Find the proportion of a standard normal population that is less than 1.5.

Enter =NORMSDIST(1.5)

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is less than 1.5.

Enter =NORMSDIST(1.5)

The result is 0.933

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is less than 1.5.

Enter =NORMSDIST(1.5)

The result is 0.933
This means that 93.3 percent of a standard normal population has a value of less than 1.5

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is less than 1.5.

Enter =NORMSDIST(1.5)

The result is 0.933
This means that 93.3 percent of a standard normal population has a value of less than 1.5

It also means that an individual selected randomly from a standard normal population has a probability of 0.933 of being less than 1.5.

Example: Standard Normal Distributic

Find the proportion of a standard normal population that is less than -0.3.

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is less than -0.3.

Enter =NORMSDIST(-0.3)

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is less than -0.3.

Enter =NORMSDIST(-0.3)

The result is 0.382

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is less than -0.3.

Enter =NORMSDIST(-0.3)

The result is 0.382
This means that 38.2 percent of a standard normal population has a value of less than -0.3

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is less than -0.3.

Enter =NORMSDIST(-0.3)

The result is 0.382
This means that 38.2 percent of a standard normal population has a value of less than -0.3

It also means that an individual selected randomly from a standard normal population has a probability of 0.382 of being less than -0.3 .

Example: Standard Normal Distributic

Find the proportion of a standard normal population that is less than zero.

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is less than zero.

Enter =NORMSDIST(0.0). The result is 0.5

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is less than -2 .

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is less than -2 .

Enter =NORMSDIST(-2). The result is 0.02275

Example: Standard Normal Distributic

Find the proportion of a standard normal population that is less than 1.75.

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is less than 1.75.

Enter =NORMSDIST(1.75). The result is 0.9599

The Normal Distribution

Sometimes we are interested in the probability that an observation from a standard normal is greater than a given value.

The Normal Distribution

Sometimes we are interested in the probability that an observation from a standard normal is greater than a given value.

The area to the right of x is given by $=1-$ NORMSDIST(\mathbf{x})

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is greater than 1.5.

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is greater than 1.5.

Enter =1-NORMSDIST(1.5)

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is greater than 1.5.

Enter $=1$-NORMSDIST(1.5)

The result is 0.0668

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is greater than 1.5.

Enter =1-NORMSDIST(1.5)

The result is 0.0668
This means that 6.68 percent of a standard normal population has a value greater than 1.5

Example: Standard Normal Distributic

Find the proportion of a standard normal population that is greater than 1.5.

Enter =1-NORMSDIST(1.5)

The result is 0.0668
This means that 6.68 percent of a standard normal population has a value greater than 1.5

It also means that an individual selected randomly from a standard normal population has a probability of 0.0668 of being greater than 1.5.

Example: Standard Normal Distributic

Find the proportion of a standard normal population that is greater than -0.3.

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is greater than -0.3.

Enter $=1-$ NORMSDIST(-0.3)

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is greater than -0.3.

Enter $=1-$ NORMSDIST(-0.3)

The result is 0.618

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is greater than -0.3.

Enter $=1$-NORMSDIST(-0.3)

The result is 0.618
This means that 61.8 percent of a standard normal population has a value greater than -0.3

Example: Standard Normal Distributic

Find the proportion of a standard normal population that is greater than -0.3.

Enter $=1$-NORMSDIST(-0.3)

The result is 0.618
This means that 61.8 percent of a standard normal population has a value greater than -0.3

It also means that an individual selected randomly from a standard normal population has a probability of 0.618 of being greater than -0.3 .

The Normal Distribution

Sometimes we are interested in the probability that an observation from a standard normal is between two given values.

The Normal Distribution

Sometimes we are interested in the probability that an observation from a standard normal is between two given values.

The area between a and b is given by =NORMSDIST(b)-NORMSDIST(a)

Example: Standard Normal Distributic

Find the proportion of a standard normal population that is between 1 and 2 .

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is between 1 and 2.

Enter =NORMSDIST(2)-NORMSDIST(1)

Example: Standard Normal Distributid

Find the proportion of a standard normal population that is between 1 and 2.

Enter =NORMSDIST(2)-NORMSDIST(1)

The result is 0.136

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is between 1 and 2.

Enter =NORMSDIST(2)-NORMSDIST(1)

The result is 0.136
This means that 13.6 percent of a standard normal population has a value between 1 and 2 .

Example: Standard Normal Distributic

Find the proportion of a standard normal population that is between 1 and 2.

Enter =NORMSDIST(2)-NORMSDIST(1)

The result is 0.136
This means that 13.6 percent of a standard normal population has a value between 1 and 2 .

It also means that an individual selected randomly from a standard normal population has a probability of 0.136 of being between 1 and 2 .

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is between -1 and 1 .

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is between -1 and 1.

Enter =NORMSDIST(2)-NORMSDIST(1)

Example: Standard Normal Distributid

Find the proportion of a standard normal population that is between -1 and 1 .

Enter =NORMSDIST(2)-NORMSDIST(1)

The result is 0.683

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is between -1 and 1 .

Enter =NORMSDIST(2)-NORMSDIST(1)

The result is 0.683
This means that 68.3 percent of a standard normal population has a value between -1 and 1 .

Example: Standard Normal Distributic

Find the proportion of a standard normal population that is between -1 and 1 .

Enter =NORMSDIST(2)-NORMSDIST(1)

The result is 0.683
This means that 68.3 percent of a standard normal population has a value between -1 and 1 .

It also means that an individual selected randomly from a standard normal population has a probability of 0.683 of being between -1 and 1 .

The Normal Distribution

Finally, we may be interested in the probability that an observation from a standard normal is outside the interval between two given values.

The Normal Distribution

Finally, we may be interested in the probability that an observation from a standard normal is outside the interval between two given values.

The area outside the interval between a and b is given by =1-NORMSDIST(b)+NORMSDIST(a)

Example: Standard Normal Distributic

Find the proportion of a standard normal population that is less than 1 or greater than 2.

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is less than 1 or greater than 2.

Enter =1-NORMSDIST(2)+NORMSDIST(1)

Example: Standard Normal Distributic

Find the proportion of a standard normal population that is less than 1 or greater than 2.

Enter =1-NORMSDIST(2)+NORMSDIST(1)

The result is 0.864

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is less than 1 or greater than 2.

Enter =1-NORMSDIST(2)+NORMSDIST(1)

The result is 0.864
This means that 86.4 percent of a standard normal population has a value less than 1 or greater than 2.

Example: Standard Normal Distributic

Find the proportion of a standard normal population that is less than 1 or greater than 2.

Enter =1-NORMSDIST(2)+NORMSDIST(1)

The result is 0.864
This means that 86.4 percent of a standard normal population has a value less than 1 or greater than 2.

It also means that an individual selected randomly from a standard normal population has a probability of 0.846 of being less than 1 or greater than 2.

Example: Standard Normal Distributic

Find the proportion of a standard normal population that is less than -1 or greater than 1.

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is less than -1 or greater than 1.

Enter =1-NORMSDIST(2)+NORMSDIST(1)

Example: Standard Normal Distributic

Find the proportion of a standard normal population that is less than -1 or greater than 1.

Enter =1-NORMSDIST(2)+NORMSDIST(1)

The result is 0.317

Example: Standard Normal Distributio

Find the proportion of a standard normal population that is less than -1 or greater than 1.

Enter =1-NORMSDIST(2)+NORMSDIST(1)

The result is 0.317
This means that 31.7 percent of a standard normal population has a value less than -1 or greater than 1.

Example: Standard Normal Distributic

Find the proportion of a standard normal population that is less than -1 or greater than 1.

Enter =1-NORMSDIST(2)+NORMSDIST(1)

The result is 0.317
This means that 31.7 percent of a standard normal population has a value less than -1 or greater than 1.
It also means that an individual selected randomly from a standard normal population has a probability of 0.317 of being less than -1 or greater than 1.

Percentiles

Now consider the opposite problem. Suppose we want to find the value x with the property that a given proportion of a standard normal population is less than x.

Percentiles

Now consider the opposite problem. Suppose we want to find the value x with the property that a given proportion of a standard normal population is less than x.

This is the same as finding percentiles of the standard normal distribution.

Percentiles

Now consider the opposite problem. Suppose we want to find the value x with the property that a given proportion of a standard normal population is less than x.

This is the same as finding percentiles of the standard normal distribution.

The function NORMSINV(p) takes a proportion p, and returns the value x with the property that p is the proportion of a standard normal population that is less than x.

Percentiles

Example: Find the value x with the the property that 74 percent of a standard normal population is less than x

Percentiles

Example: Find the value x with the the property that 74 percent of a standard normal population is less than x

Solution: Enter =NORMSINV(0.72)

Percentiles

Example: Find the value x with the the property that 74 percent of a standard normal population is less than x

Solution: Enter =NORMSINV(0.72)

The result is 0.583 , which means that 72 percent of a standard normal population is less than 0.583.

Percentiles

Example: Find the value x with the the property that 50 percent of a standard normal population is less than x

Percentiles

Example: Find the value x with the the property that 50 percent of a standard normal population is less than x

Solution: Enter =NORMSINV(0.50)

Percentiles

Example: Find the value x with the the property that 50 percent of a standard normal population is less than x

Solution: Enter =NORMSINV(0.50)

The result is 0.00 , which means that 50 percent of a standard normal population is less than zero.

Percentiles

Example: Find the value x with the the property that 50 percent of a standard normal population is less than x

Solution: Enter =NORMSINV(0.50)

The result is 0.00 , which means that 50 percent of a standard normal population is less than zero.

This agrees with the fact that the standard normal distribution is symmetric about its mean, zero.

Percentiles

Example: Find the $25^{\text {th }}$ percentile of the standard normal distribution.

Percentiles

Example: Find the $25^{\text {th }}$ percentile of the standard normal distribution.

Solution: Enter =NORMSINV(0.25)

Percentiles

Example: Find the $25^{\text {th }}$ percentile of the standard normal distribution.

Solution: Enter =NORMSINV(0.25)
The result is -0.674 , which means that 25 percent of a standard normal population is less than -0.674 .

Percentiles

Example: Find the $90^{\text {th }}$ percentile of the standard normal distribution.

Percentiles

Example: Find the $90^{\text {th }}$ percentile of the standard normal distribution.

Solution: Enter =NORMSINV(0.90)

Percentiles

Example: Find the $90^{\text {th }}$ percentile of the standard normal distribution.

Solution: Enter =NORMSINV(0.90)
The result is 1.282 , which means that 90 percent of a standard normal population is less than 1.282.

