Bernoulli Random Variables

Recall that a Bernoulli random variable is a random variable whose only possible values are 0 and 1.

Bernoulli Random Variables

Recall that a Bernoulli random variable is a random variable whose only possible values are 0 and 1 .

In general we can consider a Bernoulli random variable to be the result of an experiment with two outcomes, which for convenience we will label "success" and "failure"

Bernoulli Random Variables

Recall that a Bernoulli random variable is a random variable whose only possible values are 0 and 1.

In general we can consider a Bernoulli random variable to be the result of an experiment with two outcomes, which for convenience we will label "success" and "failure"

As before we define the Bernoulli random variable X by agreeing to assign the value of 1 to X if the result of the experiment is "success", and zero if the result is "failure":
$X= \begin{cases}1 & \text { if the outcome of the experiment is "success" } \\ 0 & \text { if the outcome of the experiment is "failure" }\end{cases}$

Discrete Distributions

Now consider a series of independent experiments, each of which produces a Bernoulli random variable with probability of success p (p is the same for all of the trials)

Discrete Distributions

Now consider a series of independent experiments, each of which produces a Bernoulli random variable with probability of success p (p is the same for all of the trials)

The following discrete probability distributions arise from this model:

If the number of trials n is fixed in advance, the number of successes X has a binomial distribution

Discrete Distributions

Now consider a series of independent experiments, each of which produces a Bernoulli random variable with probability of success p (p is the same for all of the trials)

The following discrete probability distributions arise from this model:

If the number of trials n is fixed in advance, the number of successes X has a binomial distribution

If trials continue indefinitely until the first success is obtained, the number of failures obtained X has a geometric distribution.

Discrete Distributions

Now consider a series of independent experiments, each of which produces a Bernoulli random variable with probability of success p (p is the same for all of the trials)

The following discrete probability distributions arise from this model:

If the number of trials n is fixed in advance, the number of successes X has a binomial distribution

If trials continue indefinitely until the first success is obtained, the number of failures obtained X has a geometric distribution.

If trials continue indefinitely until the $r^{\text {th }}$ success is obtained, the number of failures obtained X has a negative binomial distribution.

The Negative Binomial Distribution

The negative binomial experiment with parameters r and p consists of:

- Independent Bernoulli trials are performed until r "successes" are obtained
- The random variable X is the number of failures obtained
- The probability of success p is the same for all trials

The negative binomial Distribution

The mean or expected value of a negative binomial random variable is:

$$
\mu=E(X)=\frac{r(1-p)}{p}
$$

The negative binomial Distribution

The mean or expected value of a negative binomial random variable is:

$$
\mu=E(X)=\frac{r(1-p)}{p}
$$

The variance of a negative binomial random variable is:

$$
\sigma^{2}=V(X)=\frac{f(1-p)}{p^{2}}
$$

The negative binomial Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a negative binomial experiment with $r=3$ and probability of success $p=0.4$ at each trial:
$\mathrm{x}<-$ rnbinom(1000000,3,0.4)

The negative binomial Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a negative binomial experiment with $r=3$ and probability of success $p=0.4$ at each trial:
$\mathrm{x}<-$ rnbinom (1000000,3,0.4)
Now plot a histogram of the results:
hist(x)

The negative binomial Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a negative binomial experiment with $r=3$ and probability of success $p=0.4$ at each trial:
$\mathrm{x}<-$ rnbinom ($1000000,3,0.4$)
Now plot a histogram of the results:
hist(x)
To get a table of the results enter table(x)

The negative binomial Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a negative binomial experiment with $r=3$ and probability of success $p=0.4$ at each trial:
$\mathrm{x}<-$ rnbinom (1000000,3,0.4)
Now plot a histogram of the results:
hist(x)
To get a table of the results enter table(x)

The results through $X=6$ should look something like:

0	1	2	3	4	5
63851	114835	138084	138075	124924	103961

The Negative Binomial Distribution

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$

$\begin{array}{lllllll}63851 & 114835 & 138084 & 138075 & 124924 & 103961 & 835\end{array}$
Now compare the frequencies to the probabilities.
First compute the probability that $X=0$:
dnbinom(0,3,0.4)

The Negative Binomial Distribution

$\begin{array}{lllllll}63851 & 114835 & 138084 & 138075 & 124924 & 103961 & 835\end{array}$ Now compare the frequencies to the probabilities.
First compute the probability that $X=0$:
dnbinom(0,3,0.4)
The result should be something like
[1] 0.064

The Negative Binomial Distribution

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{lllllll}63851 & 114835 & 138084 & 138075 & 124924 & 103961 & 835\end{array}$
Now compare the frequencies to the probabilities.
First compute the probability that $X=0$:
dnbinom (0,3,0.4)
The result should be something like

$$
\text { [1] } 0.064
$$

To get the probability that $X=1$ enter
dnbinom(1,3,0.4)

The Negative Binomial Distribution

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{lllllll}63851 & 114835 & 138084 & 138075 & 124924 & 103961 & 835\end{array}$
Now compare the frequencies to the probabilities.
First compute the probability that $X=0$:
dnbinom (0,3,0.4)
The result should be something like

$$
\text { [1] } 0.064
$$

To get the probability that $X=1$ enter
dnbinom (1, 3,0.4)
This time the results should look something like:
[1] 0.1152

The Negative Binomial Distribution

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$

$\begin{array}{lllllll}63851 & 114835 & 138084 & 138075 & 124924 & 103961 & 835!\end{array}$ Next compute the probability that $X=2$:
dnbinom(2,3,0.4)

The Negative Binomial Distribution

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$

$\begin{array}{lllllll}63851 & 114835 & 138084 & 138075 & 124924 & 103961 & 835!\end{array}$ Next compute the probability that $X=2$:
dnbinom (2,3,0.4)
The result should be something like
[1] 0.13284

The Negative Binomial Distribution

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$

$\begin{array}{lllllll}63851 & 114835 & 138084 & 138075 & 124924 & 103961 & 835!\end{array}$ Next compute the probability that $X=2$:
dnbinom (2,3,0.4)
The result should be something like [1] 0.13284

To get the probability that $X=5$ enter dnbinom(5,3,0.4)

The Negative Binomial Distribution

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{lllllll}63851 & 114835 & 138084 & 138075 & 124924 & 103961 & 835!\end{array}$ Next compute the probability that $X=2$:
dnbinom (2, 3, 0.4)
The result should be something like
[1] 0.13284
To get the probability that $X=5$ enter
dnbinom (5, 3, 0.4)
This time the results should look something like:
[1] 0.1045094

The Negative Binomial Distribution

The expected value $E(X)$ in this case is:

$$
E(X)=\frac{r(1-p)}{p}=\frac{3(.6)}{.4}=4.5
$$

The Negative Binomial Distribution

The expected value $E(X)$ in this case is:

$$
E(X)=\frac{r(1-p)}{p}=\frac{3(.6)}{.4}=4.5
$$

To compute the sample mean \bar{x}, enter mean (x)

The Negative Binomial Distribution

The expected value $E(X)$ in this case is:

$$
E(X)=\frac{r(1-p)}{p}=\frac{3(.6)}{.4}=4.5
$$

To compute the sample mean \bar{x}, enter
mean (x) The result should be something like
[1] 4.50794

The Negative Binomial Distribution

The variance $V(X)$ in this case is:

$$
V(X)=\frac{r(1-p)}{p^{2}}=\frac{3(.6)}{.4^{2}}=11.25
$$

The Negative Binomial Distribution

The variance $V(X)$ in this case is:

$$
V(X)=\frac{r(1-p)}{p^{2}}=\frac{3(.6)}{.4^{2}}=11.25
$$

To compute the sample variance s^{2}, enter
var (x)

The Negative Binomial Distribution

The variance $V(X)$ in this case is:

$$
V(X)=\frac{r(1-p)}{p^{2}}=\frac{3(.6)}{.4^{2}}=11.25
$$

To compute the sample variance s^{2}, enter
var (x) The result should be something like
[1] 11.23359

The Negative Binomial Distribution

A fair coin is tossed until the third heads comes up.
Find the probability that the third heads comes up on the fifth toss.

The Negative Binomial Distribution

A fair coin is tossed until the third heads comes up.
Find the probability that the third heads comes up on the fifth toss.

Solution: 0.1875

The Negative Binomial Distribution

A fair coin is tossed until the third heads comes up.
Find the probability that the third heads comes up on the fifth toss.

Solution: 0.1875
dnbinom (5-3, 3, 0.5)

The Negative Binomial Distribution

A fair coin is tossed until the third heads comes up.
Find the probability that the third heads comes up on the fifth toss or sooner.

The Negative Binomial Distribution

A fair coin is tossed until the third heads comes up.
Find the probability that the third heads comes up on the fifth toss or sooner.

Solution: 0.5

The Negative Binomial Distribution

A fair coin is tossed until the third heads comes up.
Find the probability that the third heads comes up on the fifth toss or sooner.

Solution: 0.5
pnbinom(5-3, 3, 0.5)

The Negative Binomial Distribution

A fair coin is tossed until the first heads comes up.
Find the probability that this takes more than 9 tosses.

The Negative Binomial Distribution

A fair coin is tossed until the first heads comes up.
Find the probability that this takes more than 9 tosses.
Solution: 0.9101562

The Negative Binomial Distribution

A fair coin is tossed until the first heads comes up.
Find the probability that this takes more than 9 tosses.
Solution: 0.9101562
1-pnbinom(9-3,0.5)

The Negative Binomial Distribution

A fair coin is tossed until the third heads comes up.
Find the probability that this takes 9 or more tosses.

The Negative Binomial Distribution

A fair coin is tossed until the third heads comes up.
Find the probability that this takes 9 or more tosses.
Solution: 0.8554688

The Negative Binomial Distribution

A fair coin is tossed until the third heads comes up.
Find the probability that this takes 9 or more tosses.
Solution: 0.8554688
1-pnbinom (8-3, 3, 0.5)

The Negative Binomial Distribution

A baseball player has a .300 batting average.
Find the probability that their third hit in a game occurs on the $5^{t h}$ time at bat.

The Negative Binomial Distribution

A baseball player has a .300 batting average.
Find the probability that their third hit in a game occurs on the $5^{t h}$ time at bat.

Solution: 0.1875

The Negative Binomial Distribution

A baseball player has a .300 batting average.
Find the probability that their third hit in a game occurs on the $5^{t h}$ time at bat.

Solution: 0.1875
dnbinom(5-3, 3, 0.5)

