
Bernoulli Random Variables
Recall that a Bernoulli random variable is a random variable
whose only possible values are 0 and 1.
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Bernoulli Random Variables
Recall that a Bernoulli random variable is a random variable
whose only possible values are 0 and 1.

In general we can consider a Bernoulli random variable to
be the result of an experiment with two outcomes, which for
convenience we will label "success" and "failure"
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Bernoulli Random Variables
Recall that a Bernoulli random variable is a random variable
whose only possible values are 0 and 1.

In general we can consider a Bernoulli random variable to
be the result of an experiment with two outcomes, which for
convenience we will label "success" and "failure"

As before we define the Bernoulli random variable X by
agreeing to assign the value of 1 to X if the result of the
experiment is "success", and zero if the result is "failure":

X =

{

1 if the outcome of the experiment is "success"
0 if the outcome of the experiment is "failure"
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Discrete Distributions
Now consider a series of independent experiments, each of
which produces a Bernoulli random variable with probability
of success p (p is the same for all of the trials)
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Discrete Distributions
Now consider a series of independent experiments, each of
which produces a Bernoulli random variable with probability
of success p (p is the same for all of the trials)

The following discrete probability distributions arise from
this model:

If the number of trials n is fixed in advance, the number of
successes X has a binomial distribution

Discrete Distributions – p. 2/14



Discrete Distributions
Now consider a series of independent experiments, each of
which produces a Bernoulli random variable with probability
of success p (p is the same for all of the trials)

The following discrete probability distributions arise from
this model:

If the number of trials n is fixed in advance, the number of
successes X has a binomial distribution

If trials continue indefinitely until the first success is
obtained, the number of failures obtained X has a
geometric distribution.
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Discrete Distributions
Now consider a series of independent experiments, each of
which produces a Bernoulli random variable with probability
of success p (p is the same for all of the trials)

The following discrete probability distributions arise from
this model:

If the number of trials n is fixed in advance, the number of
successes X has a binomial distribution

If trials continue indefinitely until the first success is
obtained, the number of failures obtained X has a
geometric distribution.

If trials continue indefinitely until the rth success is
obtained, the number of failures obtained X has a negative
binomial distribution.
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The Negative Binomial Distribution
The negative binomial experiment with parameters r and p

consists of:

Independent Bernoulli trials are performed until r

"successes" are obtained

The random variable X is the number of failures
obtained

The probability of success p is the same for all trials
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The negative binomial Distribution
The mean or expected value of a negative binomial random
variable is:

µ = E(X) =
r(1− p)

p
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The negative binomial Distribution
The mean or expected value of a negative binomial random
variable is:

µ = E(X) =
r(1− p)

p

The variance of a negative binomial random variable is:

σ2 = V (X) =
f(1− p)

p2
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The negative binomial Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
negative binomial experiment with r = 3 and probability of
success p = 0.4 at each trial:

x<-rnbinom(1000000,3,0.4)
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The negative binomial Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
negative binomial experiment with r = 3 and probability of
success p = 0.4 at each trial:

x<-rnbinom(1000000,3,0.4)

Now plot a histogram of the results:

hist(x)
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The negative binomial Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
negative binomial experiment with r = 3 and probability of
success p = 0.4 at each trial:

x<-rnbinom(1000000,3,0.4)

Now plot a histogram of the results:

hist(x)

To get a table of the results enter

table(x)
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The negative binomial Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
negative binomial experiment with r = 3 and probability of
success p = 0.4 at each trial:

x<-rnbinom(1000000,3,0.4)

Now plot a histogram of the results:

hist(x)

To get a table of the results enter

table(x)

The results through X = 6 should look something like:
0 1 2 3 4 5

63851 114835 138084 138075 124924 103961 83552
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The Negative Binomial Distribution

0 1 2 3 4 5
63851 114835 138084 138075 124924 103961 83552

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dnbinom(0,3,0.4)
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The Negative Binomial Distribution

0 1 2 3 4 5
63851 114835 138084 138075 124924 103961 83552

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dnbinom(0,3,0.4)

The result should be something like

[1] 0.064
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The Negative Binomial Distribution

0 1 2 3 4 5
63851 114835 138084 138075 124924 103961 83552

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dnbinom(0,3,0.4)

The result should be something like

[1] 0.064

To get the probability that X = 1 enter

dnbinom(1,3,0.4)
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The Negative Binomial Distribution

0 1 2 3 4 5
63851 114835 138084 138075 124924 103961 83552

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dnbinom(0,3,0.4)

The result should be something like

[1] 0.064

To get the probability that X = 1 enter

dnbinom(1,3,0.4)

This time the results should look something like:

[1] 0.1152
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The Negative Binomial Distribution

0 1 2 3 4 5
63851 114835 138084 138075 124924 103961 83552

Next compute the probability that X = 2:

dnbinom(2,3,0.4)
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The Negative Binomial Distribution

0 1 2 3 4 5
63851 114835 138084 138075 124924 103961 83552

Next compute the probability that X = 2:

dnbinom(2,3,0.4)

The result should be something like

[1] 0.13284
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The Negative Binomial Distribution

0 1 2 3 4 5
63851 114835 138084 138075 124924 103961 83552

Next compute the probability that X = 2:

dnbinom(2,3,0.4)

The result should be something like

[1] 0.13284

To get the probability that X = 5 enter

dnbinom(5,3,0.4)
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The Negative Binomial Distribution

0 1 2 3 4 5
63851 114835 138084 138075 124924 103961 83552

Next compute the probability that X = 2:

dnbinom(2,3,0.4)

The result should be something like

[1] 0.13284

To get the probability that X = 5 enter

dnbinom(5,3,0.4)

This time the results should look something like:

[1] 0.1045094
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The Negative Binomial Distribution
The expected value E(X) in this case is:

E(X) =
r(1− p)

p
=

3(.6)

.4
= 4.5
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The Negative Binomial Distribution
The expected value E(X) in this case is:

E(X) =
r(1− p)

p
=

3(.6)

.4
= 4.5

To compute the sample mean x, enter

mean(x)
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The Negative Binomial Distribution
The expected value E(X) in this case is:

E(X) =
r(1− p)

p
=

3(.6)

.4
= 4.5

To compute the sample mean x, enter

mean(x) The result should be something like

[1] 4.50794
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The Negative Binomial Distribution
The variance V (X) in this case is:

V (X) =
r(1− p)

p2
=

3(.6)

.42
= 11.25
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The Negative Binomial Distribution
The variance V (X) in this case is:

V (X) =
r(1− p)

p2
=

3(.6)

.42
= 11.25

To compute the sample variance s2, enter

var(x)
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The Negative Binomial Distribution
The variance V (X) in this case is:

V (X) =
r(1− p)

p2
=

3(.6)

.42
= 11.25

To compute the sample variance s2, enter

var(x) The result should be something like

[1] 11.23359
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The Negative Binomial Distribution
A fair coin is tossed until the third heads comes up.

Find the probability that the third heads comes up on the
fifth toss.
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The Negative Binomial Distribution
A fair coin is tossed until the third heads comes up.

Find the probability that the third heads comes up on the
fifth toss.

Solution: 0.1875
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The Negative Binomial Distribution
A fair coin is tossed until the third heads comes up.

Find the probability that the third heads comes up on the
fifth toss.

Solution: 0.1875

dnbinom(5-3,3,0.5)
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The Negative Binomial Distribution
A fair coin is tossed until the third heads comes up.

Find the probability that the third heads comes up on the
fifth toss or sooner.
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The Negative Binomial Distribution
A fair coin is tossed until the third heads comes up.

Find the probability that the third heads comes up on the
fifth toss or sooner.

Solution: 0.5
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The Negative Binomial Distribution
A fair coin is tossed until the third heads comes up.

Find the probability that the third heads comes up on the
fifth toss or sooner.

Solution: 0.5

pnbinom(5-3,3,0.5)
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The Negative Binomial Distribution
A fair coin is tossed until the first heads comes up.

Find the probability that this takes more than 9 tosses.
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The Negative Binomial Distribution
A fair coin is tossed until the first heads comes up.

Find the probability that this takes more than 9 tosses.

Solution: 0.9101562
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The Negative Binomial Distribution
A fair coin is tossed until the first heads comes up.

Find the probability that this takes more than 9 tosses.

Solution: 0.9101562

1-pnbinom(9-3,0.5)
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The Negative Binomial Distribution
A fair coin is tossed until the third heads comes up.

Find the probability that this takes 9 or more tosses.
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The Negative Binomial Distribution
A fair coin is tossed until the third heads comes up.

Find the probability that this takes 9 or more tosses.

Solution: 0.8554688
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The Negative Binomial Distribution
A fair coin is tossed until the third heads comes up.

Find the probability that this takes 9 or more tosses.

Solution: 0.8554688

1-pnbinom(8-3,3,0.5)
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The Negative Binomial Distribution
A baseball player has a .300 batting average.

Find the probability that their third hit in a game occurs on
the 5th time at bat.
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The Negative Binomial Distribution
A baseball player has a .300 batting average.

Find the probability that their third hit in a game occurs on
the 5th time at bat.

Solution: 0.1875
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The Negative Binomial Distribution
A baseball player has a .300 batting average.

Find the probability that their third hit in a game occurs on
the 5th time at bat.

Solution: 0.1875

dnbinom(5-3,3,0.5)
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