Probability

probability is an important area of applied mathematics that deals with uncertainty

Probability

probability is an important area of applied mathematics that deals with uncertainty
Since we are not able to look into the future, we cannot know with certainty whether or not an event that has an effect on our life will occur.

Probability

probability is an important area of applied mathematics that deals with uncertainty
Since we are not able to look into the future, we cannot know with certainty whether or not an event that has an effect on our life will occur.

When we speak of the probability of some event, we are talking about a measure of how likely it is that the event will occur.

Probability

The event can be just about anything:

- A certain teams wins the world series

Probability

The event can be just about anything:

- A certain teams wins the world series
- A coin comes up heads

Probability

The event can be just about anything:

- A certain teams wins the world series
- A coin comes up heads
- A lottery ticket wins $\$ 100$

Probability

The event can be just about anything:

- A certain teams wins the world series
- A coin comes up heads
- A lottery ticket wins $\$ 100$
- A card drawn from a shuffled deck is an ace

Probability

The event can be just about anything:

- A certain teams wins the world series
- A coin comes up heads
- A lottery ticket wins $\$ 100$
- A card drawn from a shuffled deck is an ace
- A driver files an insurance claim in a certain year

Probability

The event can be just about anything:

- A certain teams wins the world series
- A coin comes up heads
- A lottery ticket wins $\$ 100$
- A card drawn from a shuffled deck is an ace
- A driver files an insurance claim in a certain year
- The price of a stock goes above $\$ 20$

Probability

The event can be just about anything:

- A certain teams wins the world series
- A coin comes up heads
- A lottery ticket wins $\$ 100$
- A card drawn from a shuffled deck is an ace
- A driver files an insurance claim in a certain year
- The price of a stock goes above $\$ 20$
- A storm produces more than a foot of snow

Probability

Because so many aspects of our lives involve uncertainty, it is easy to understand why there has long been an interest in understanding it.

Probability

Because so many aspects of our lives involve uncertainty, it is easy to understand why there has long been an interest in understanding it.
Gambling in one form or another is ancient. Most of the early interest in probability was motivated by games of chance.

Probability

Because so many aspects of our lives involve uncertainty, it is easy to understand why there has long been an interest in understanding it.
Gambling in one form or another is ancient. Most of the early interest in probability was motivated by games of chance.
Unlike areas of mathematics like plane geometry where the ancients got it right, the ideas relating to probability were invariably wrong until fairly recently.

Probability

It was around the 17 th century before a reasonably correct theory of probability began to take shape, and even then it was not put on a solid mathematical footing until about 1930.

Probability

It was around the 17 th century before a reasonably correct theory of probability began to take shape, and even then it was not put on a solid mathematical footing until about 1930.

About this time, the Russian mathematician Alexander Kolmogorov published a set of what are called axioms, basically statements that are taken to be true as a starting point for the theory of probability.

Probability

It was around the 17 th century before a reasonably correct theory of probability began to take shape, and even then it was not put on a solid mathematical footing until about 1930.

About this time, the Russian mathematician Alexander Kolmogorov published a set of what are called axioms, basically statements that are taken to be true as a starting point for the theory of probability.
Although Kolmogorov is not mentioned, the Rules of Probabilities in section 5.1 of the text are taken from the Kolmogorov axioms.

Probability

The Kolmogorov axioms gave the theory of probability a sound theoretical footing, much as Euclid's axioms put plane geometry on a solid footing 2500 years ago.

Probability

The Kolmogorov axioms gave the theory of probability a sound theoretical footing, much as Euclid's axioms put plane geometry on a solid footing 2500 years ago. In the case of probability theory, it just took much longer to sort things out.

Probability

The Kolmogorov axioms gave the theory of probability a sound theoretical footing, much as Euclid's axioms put plane geometry on a solid footing 2500 years ago.
In the case of probability theory, it just took much longer to sort things out.
One of the reasons for this is that, for a long time, probability theory was associated with gambling and gamblers, and therefore was not considered a legitimate scientific pursuit.

Probability

The Kolmogorov axioms gave the theory of probability a sound theoretical footing, much as Euclid's axioms put plane geometry on a solid footing 2500 years ago. In the case of probability theory, it just took much longer to sort things out.
One of the reasons for this is that, for a long time, probability theory was associated with gambling and gamblers, and therefore was not considered a legitimate scientific pursuit.
As scientific knowledge grew, particularly in early 20th century physics, it became obvious that a mathematical theory of probability was important, even central to understanding certain physical phenomena.

Probability

This did not come without controversy. Albert Einstein was very reluctant to accept the ideas of some of his contemporaries regarding the role of probability in physics.

Probability

This did not come without controversy. Albert Einstein was very reluctant to accept the ideas of some of his contemporaries regarding the role of probability in physics.
There is a famous quote in which Einstein sums up his convictions with the statement "God doesn't play dice with the universe"

Probability

This did not come without controversy. Albert Einstein was very reluctant to accept the ideas of some of his contemporaries regarding the role of probability in physics.
There is a famous quote in which Einstein sums up his convictions with the statement "God doesn't play dice with the universe"

Times and attitudes have changed.
Stephen Hawking, one of today's most prominent and accomplished physicists, said "Not only does God play dice with the universe, but He sometimes throws the dice where we can't see them".

Probability

Much as theoretical physicists conduct thought experiments, the idea of an experiment is central to probability theory.

Probability

Much as theoretical physicists conduct thought experiments, the idea of an experiment is central to probability theory.
Definitions vary a bit, but most contain the idea of a repeatable procedure that produces one of a specific set of possible outcomes.

Probability

Much as theoretical physicists conduct thought experiments, the idea of an experiment is central to probability theory.
Definitions vary a bit, but most contain the idea of a repeatable procedure that produces one of a specific set of possible outcomes.
Collectively, these outcomes are called the sample space of the experiment.

Probability

Much as theoretical physicists conduct thought experiments, the idea of an experiment is central to probability theory.
Definitions vary a bit, but most contain the idea of a repeatable procedure that produces one of a specific set of possible outcomes.
Collectively, these outcomes are called the sample space of the experiment.
An event is defined as any collection of outcomes, that is, any subset of the sample space.

