
Bernoulli Random Variables
Recall that a Bernoulli random variable is a random variable
whose only possible values are 0 and 1.
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Bernoulli Random Variables
Recall that a Bernoulli random variable is a random variable
whose only possible values are 0 and 1.

In general we can consider a Bernoulli random variable to
be the result of an experiment with two outcomes, which for
convenience we will label "success" and "failure"
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Bernoulli Random Variables
Recall that a Bernoulli random variable is a random variable
whose only possible values are 0 and 1.

In general we can consider a Bernoulli random variable to
be the result of an experiment with two outcomes, which for
convenience we will label "success" and "failure"

As before we define the Bernoulli random variable X by
agreeing to assign the value of 1 to X if the result of the
experiment is "success", and zero if the result is "failure":

X =

{

1 if the outcome of the experiment is "success"
0 if the outcome of the experiment is "failure"

Discrete Distributions – p. 1/16



Bernoulli Random Variables
To be consistent with the Kolmogorov probability axioms the
probability of "success" must be a number p between zero
and one (inclusive), and the probability of "failure", which is
the compliment of "success", must be 1 − p.
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Bernoulli Random Variables
To be consistent with the Kolmogorov probability axioms the
probability of "success" must be a number p between zero
and one (inclusive), and the probability of "failure", which is
the compliment of "success", must be 1 − p.

This results in the following probability mass function f(x)
which we will refer to as the Bernoulli distribution:

f(x) = P (X = x) =

{

p if x = 1

1 − p if x = 0
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Bernoulli Random Variables
To be consistent with the Kolmogorov probability axioms the
probability of "success" must be a number p between zero
and one (inclusive), and the probability of "failure", which is
the compliment of "success", must be 1 − p.

This results in the following probability mass function f(x)
which we will refer to as the Bernoulli distribution:

f(x) = P (X = x) =

{

p if x = 1

1 − p if x = 0

Most of the discrete probability distributions we will now
consider are related to the Bernoulli distribution.
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Discrete Distributions
Now consider a series of independent experiments, each of
which produces a Bernoulli random variable with probability
of success p (p is the same for all of the trials)
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Discrete Distributions
Now consider a series of independent experiments, each of
which produces a Bernoulli random variable with probability
of success p (p is the same for all of the trials)

The following discrete probability distributions arise from
this model:

If the number of trials n is fixed in advance, the number of
successes X has a binomial distribution
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Discrete Distributions
Now consider a series of independent experiments, each of
which produces a Bernoulli random variable with probability
of success p (p is the same for all of the trials)

The following discrete probability distributions arise from
this model:

If the number of trials n is fixed in advance, the number of
successes X has a binomial distribution

If trials continue indefinitely until the first success is
obtained, the number of failures obtained X has a
geometric distribution.
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Discrete Distributions
Now consider a series of independent experiments, each of
which produces a Bernoulli random variable with probability
of success p (p is the same for all of the trials)

The following discrete probability distributions arise from
this model:

If the number of trials n is fixed in advance, the number of
successes X has a binomial distribution

If trials continue indefinitely until the first success is
obtained, the number of failures obtained X has a
geometric distribution.

If trials continue indefinitely until the rth success is
obtained, the number of failures obtained X has a negative
binomial distribution.
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Discrete Distributions
The other related distribution we will consider is the
Poisson distribution.
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Discrete Distributions
The other related distribution we will consider is the
Poisson distribution.

The Poisson is a limiting form of the binomial distribution
that you get if you let n become very large and the
probability of success p very small, but always keep np = λ

the same.
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Discrete Distributions
The other related distribution we will consider is the
Poisson distribution.

The Poisson is a limiting form of the binomial distribution
that you get if you let n become very large and the
probability of success p very small, but always keep np = λ

the same.

Another way to say this is that we take binomial random
variables with larger and larger n, but we keep the expected
number of successes np = λ the same for all of them.
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Discrete Distributions
The other related distribution we will consider is the
Poisson distribution.

The Poisson is a limiting form of the binomial distribution
that you get if you let n become very large and the
probability of success p very small, but always keep np = λ

the same.

Another way to say this is that we take binomial random
variables with larger and larger n, but we keep the expected
number of successes np = λ the same for all of them.

The limit of the distribution of such a sequence of random
variables as n → ∞ is a Poisson.

Discrete Distributions – p. 4/16



The Binomial Distribution
The binomial experiment consists of:

n independent Bernoulli trials are performed

The random variable X is the sum of the results (i.e.,
the number of successes)

The probability of success p is the same for all trials
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The Binomial Distribution
The binomial experiment consists of:

n independent Bernoulli trials are performed

The random variable X is the sum of the results (i.e.,
the number of successes)

The probability of success p is the same for all trials

Expected value: E(X) = np Variance: V (X) = np(1 − p)
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The Geometric Distribution
The geometric experiment consists of:

Independent Bernoulli trials are performed until the first
"success" is obtained

The random variable X is the number of failures
obtained

The probability of success p is the same for all trials
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The Geometric Distribution
The geometric experiment consists of:

Independent Bernoulli trials are performed until the first
"success" is obtained

The random variable X is the number of failures
obtained

The probability of success p is the same for all trials

The probability mass function (pmf) f(x) is:

f(x) = P (X = x) = g(x; p) = p(1 − p)x, x = 0, 1, 2, 3, . . .
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The Geometric Distribution
The geometric experiment consists of:

Independent Bernoulli trials are performed until the first
"success" is obtained

The random variable X is the number of failures
obtained

The probability of success p is the same for all trials
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The Geometric Distribution
The geometric experiment consists of:

Independent Bernoulli trials are performed until the first
"success" is obtained

The random variable X is the number of failures
obtained

The probability of success p is the same for all trials

The probability mass function (pmf) f(x) is:

f(x) = P (X = x) = g(x; p) = p(1 − p)x, x = 0, 1, 2, 3, . . .
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The Geometric Distribution
The mean or expected value of a geometric random
variable is:

µ = E(X) =
1 − p

p
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The Geometric Distribution
The mean or expected value of a geometric random
variable is:

µ = E(X) =
1 − p

p

The variance of a geometric random variable is:

σ2 = V (X) =
1 − p

p2
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The Geometric Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
geometric experiment with probability of success p = 0.4 at
each trial:

x<-rgeom(1000000,0.4)

Discrete Distributions – p. 9/16



The Geometric Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
geometric experiment with probability of success p = 0.4 at
each trial:

x<-rgeom(1000000,0.4)

Now plot a histogram of the results:

hist(x)

Discrete Distributions – p. 9/16



The Geometric Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
geometric experiment with probability of success p = 0.4 at
each trial:

x<-rgeom(1000000,0.4)

Now plot a histogram of the results:

hist(x)

To get a table of the results enter

table(x)
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The Geometric Distribution
Now we will perform some numerical experiments.
First generate a sample of 1, 000, 000 observations for a
geometric experiment with probability of success p = 0.4 at
each trial:

x<-rgeom(1000000,0.4)

Now plot a histogram of the results:

hist(x)

To get a table of the results enter

table(x)

The results through X = 6 should look something like:
0 1 2 3 4 5 6

399422 240431 144595 86377 51550 31004 18720
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The Geometric Distribution

0 1 2 3 4 5 6
399422 240431 144595 86377 51550 31004 18720

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dgeom(0,0.4)
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The Geometric Distribution

0 1 2 3 4 5 6
399422 240431 144595 86377 51550 31004 18720

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dgeom(0,0.4)

The result should be something like

[1] 0.4
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The Geometric Distribution

0 1 2 3 4 5 6
399422 240431 144595 86377 51550 31004 18720

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dgeom(0,0.4)

The result should be something like

[1] 0.4

To get the probability that X = 1 enter

dgeom(1,0.4)
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The Geometric Distribution

0 1 2 3 4 5 6
399422 240431 144595 86377 51550 31004 18720

Now compare the frequencies to the probabilities.
First compute the probability that X = 0:

dgeom(0,0.4)

The result should be something like

[1] 0.4

To get the probability that X = 1 enter

dgeom(1,0.4)

This time the results should look something like:

[1] 0.24
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The Geometric Distribution

0 1 2 3 4 5 6
399422 240431 144595 86377 51550 31004 18720

Next compute the probability that X = 2:

dgeom(2,0.4)
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The Geometric Distribution

0 1 2 3 4 5 6
399422 240431 144595 86377 51550 31004 18720

Next compute the probability that X = 2:

dgeom(2,0.4)

The result should be something like

[1] 0.144
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The Geometric Distribution

0 1 2 3 4 5 6
399422 240431 144595 86377 51550 31004 18720

Next compute the probability that X = 2:

dgeom(2,0.4)

The result should be something like

[1] 0.144

To get the probability that X = 5 enter

dbinom(1,5,0.4)
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The Geometric Distribution

0 1 2 3 4 5 6
399422 240431 144595 86377 51550 31004 18720

Next compute the probability that X = 2:

dgeom(2,0.4)

The result should be something like

[1] 0.144

To get the probability that X = 5 enter

dbinom(1,5,0.4)

This time the results should look something like:

[1] 0.031104
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The Geometric Distribution
The expected value E(X) in this case is:

E(X) =
1 − p

p
=

.6

.4
= 1.5
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The Geometric Distribution
The expected value E(X) in this case is:

E(X) =
1 − p

p
=

.6

.4
= 1.5

To compute the sample mean x, enter

mean(x)
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The Geometric Distribution
The expected value E(X) in this case is:

E(X) =
1 − p

p
=

.6

.4
= 1.5

To compute the sample mean x, enter

mean(x) The result should be something like

[1] 1.499121
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The Geometric Distribution
The variance V (X) in this case is:

V (X) =
1 − p

p2
=

.6

.42
= 3.75
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The Geometric Distribution
The variance V (X) in this case is:

V (X) =
1 − p

p2
=

.6

.42
= 3.75

To compute the sample variance s2, enter

var(x)
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The Geometric Distribution
The variance V (X) in this case is:

V (X) =
1 − p

p2
=

.6

.42
= 3.75

To compute the sample variance s2, enter

var(x) The result should be something like

[1] 3.733986
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The Geometric Distribution
A fair coin is tossed until the first heads comes up.

Find the probability that the first heads comes up on the
fifth toss.
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The Geometric Distribution
A fair coin is tossed until the first heads comes up.

Find the probability that the first heads comes up on the
fifth toss.

Solution: 0.03125
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The Geometric Distribution
A fair coin is tossed until the first heads comes up.

Find the probability that the first heads comes up on the
fifth toss.

Solution: 0.03125

dgeom(5-1,0.5)
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The Geometric Distribution
A fair coin is tossed until the first heads comes up.

Find the probability that the first heads comes up on the
fifth toss or sooner.
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The Geometric Distribution
A fair coin is tossed until the first heads comes up.

Find the probability that the first heads comes up on the
fifth toss or sooner.

Solution: 0.96875
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The Geometric Distribution
A fair coin is tossed until the first heads comes up.

Find the probability that the first heads comes up on the
fifth toss or sooner.

Solution: 0.96875

pgeom(5-1,0.5)
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The Geometric Distribution
A fair coin is tossed until the first heads comes up.

Find the probability that this takes more than 9 tosses.
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The Geometric Distribution
A fair coin is tossed until the first heads comes up.

Find the probability that this takes more than 9 tosses.

Solution: 0.001953
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The Geometric Distribution
A fair coin is tossed until the first heads comes up.

Find the probability that this takes more than 9 tosses.

Solution: 0.001953

1-pgeom(9-1,0.5)
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The Geometric Distribution
A fair coin is tossed until the first heads comes up.

Find the probability that this takes 9 or more tosses.
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The Geometric Distribution
A fair coin is tossed until the first heads comes up.

Find the probability that this takes 9 or more tosses.

Solution: 0.00390625
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The Geometric Distribution
A fair coin is tossed until the first heads comes up.

Find the probability that this takes 9 or more tosses.

Solution: 0.00390625

1-pgeom(8-1,0.5)
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The Geometric Distribution
A baseball player has a .300 batting average.

Find the probability that their first hit in a game occurs on
the 4th time at bat.
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The Geometric Distribution
A baseball player has a .300 batting average.

Find the probability that their first hit in a game occurs on
the 4th time at bat.

Solution: 0.1029
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The Geometric Distribution
A baseball player has a .300 batting average.

Find the probability that their first hit in a game occurs on
the 4th time at bat.

Solution: 0.1029

dgeom(4-1,0.5)
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