Counting

A large branch of Mathematics called combinatorics deals with problems of how to count things.

Counting

A large branch of Mathematics called combinatorics deals with problems of how to count things.

A math professor whose specialty is in this area told me it is one of the most active areas of research in math.

Counting

A large branch of Mathematics called combinatorics deals with problems of how to count things.

A math professor whose specialty is in this area told me it is one of the most active areas of research in math.

My thesis advisor told me if he wasn't working in difference equations, he would probably be working in combinatorics.

Counting

A large branch of Mathematics called combinatorics deals with problems of how to count things.

A math professor whose specialty is in this area told me it is one of the most active areas of research in math.

My thesis advisor told me if he wasn't working in difference equations, he would probably be working in combinatorics.

You might expect that the Mathematics behind something a simple as counting would have been completely worked out year ago, but that is not the case at all.

Counting

A large branch of Mathematics called combinatorics deals with problems of how to count things.

A math professor whose specialty is in this area told me it is one of the most active areas of research in math.

My thesis advisor told me if he wasn't working in difference equations, he would probably be working in combinatorics.

You might expect that the Mathematics behind something a simple as counting would have been completely worked out year ago, but that is not the case at all.

We will now explore some results in combinatorics, starting with the "multiplication rule"

Multiplication Rule

Suppose you are going to specify a card from a standard deck of 52 .

Multiplication Rule

Suppose you are going to specify a card from a standard deck of 52.

You have four choices for the suit: clubs, spades, hearts, diamonds

Multiplication Rule

Suppose you are going to specify a card from a standard deck of 52 .

You have four choices for the suit: clubs, spades, hearts, diamonds

You have 13 choices for the denomination:
$A, 2,3, \ldots, J, Q, K$

Multiplication Rule

Suppose you are going to specify a card from a standard deck of 52 .

You have four choices for the suit: clubs, spades, hearts, diamonds

You have 13 choices for the denomination:
$A, 2,3, \ldots, J, Q, K$
The total number of different ways you can make the two choices is:

$$
4 \cdot 13=52
$$

Multiplication Rule

Suppose you are going to specify a card from a standard deck of 52 .
You have four choices for the suit: clubs, spades, hearts, diamonds

You have 13 choices for the denomination:
$A, 2,3, \ldots, J, Q, K$
The total number of different ways you can make the two choices is:

$$
4 \cdot 13=52
$$

This reflects the general idea that if you can do one task m ways and a second task n ways, the number of different ways you can do the two tasks is $m \times n$.

Counting Rules for two items

The rule applies to any ordered pair.
Suppose we are going to make an ordered pair

$$
(P, Q)
$$

with:

- P chosen from a set of n possibilities
- Q from a set of m possibilities

Counting Rules for two items

The rule applies to any ordered pair.
Suppose we are going to make an ordered pair

$$
(P, Q)
$$

with:

- P chosen from a set of n possibilities
- Q from a set of m possibilities
the number of distinct ordered pairs that can possibly result is:

$$
n \times m
$$

Counting Rules for two items

Suppose we are considering a car purchase.
For a particular model, we might have a choice of three body styles, sedan, hatchback, or convertible.

Counting Rules for two items

Suppose we are considering a car purchase.
For a particular model, we might have a choice of three body styles, sedan, hatchback, or convertible.

In addition, we might have two choices of transmission, automatic or manual.

Counting Rules for two items

Suppose we are considering a car purchase.
For a particular model, we might have a choice of three body styles, sedan, hatchback, or convertible.

In addition, we might have two choices of transmission, automatic or manual.

The m times n rule says that we have a total of 6 possibilities. They are:
sedan manual sedan automatic
hatchback manual hatchback manual
convertible manual convertible automatic

Counting Rules for n-tuples

The $m \times n$ rule extends to ordered lists with arbitrary numbers of entries.

Counting Rules for n-tuples

The $m \times n$ rule extends to ordered lists with arbitrary numbers of entries.
In general, if we are choosing an ordered list of k elements with n_{1} choices for the first element, n_{2} for the second, and so on, the number of possible ordered k-tuples is:

$$
n_{1} \cdot n_{2} \cdot n_{3} \cdots n_{k}
$$

Permutations

A permutation is an ordered subset.

Permutations

A permutation is an ordered subset.
If this class were to elect a president, vice president, and secretary, each distinct set of officers would be considered a permutation of three members from a class of twenty four.

Permutations

A permutation is an ordered subset.
If this class were to elect a president, vice president, and secretary, each distinct set of officers would be considered a permutation of three members from a class of twenty four.
Order matters because any given set of three people can be assigned in several ways to the three offices.

Permutations

A permutation is an ordered subset.
If this class were to elect a president, vice president, and secretary, each distinct set of officers would be considered a permutation of three members from a class of twenty four.
Order matters because any given set of three people can be assigned in several ways to the three offices.
The number of permutations (ordered subsets) of size r taken from a set of n objects is:

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

Permutations

For the problem of picking three officers from a class of twenty four, this is:

$$
\begin{aligned}
{ }_{24} R_{3}= & \frac{24!}{21!}=\frac{24 \cdot 23 \cdot 22 \cdot 21 \cdots 2 \cdot 1}{21 \cdot 10 \cdots 2 \cdot 1} \\
& =24 \cdot 23 \cdot 22=12,144
\end{aligned}
$$

Permutations

For the problem of picking three officers from a class of twenty four, this is:

$$
\begin{aligned}
{ }_{24} R_{3}= & \frac{24!}{21!}=\frac{24 \cdot 23 \cdot 22 \cdot 21 \cdots 2 \cdot 1}{21 \cdot 10 \cdots 2 \cdot 1} \\
& =24 \cdot 23 \cdot 22=12,144
\end{aligned}
$$

An easier way is to use a spreadsheet formula to calculate ${ }_{n} P_{r}$:

$$
=P E R M U T(n, r)
$$

Permutations

For the problem of picking three officers from a class of twenty four, this is:

$$
\begin{aligned}
{ }_{24} R_{3}= & \frac{24!}{21!}=\frac{24 \cdot 23 \cdot 22 \cdot 21 \cdots 2 \cdot 1}{21 \cdot 10 \cdots 2 \cdot 1} \\
& =24 \cdot 23 \cdot 22=12,144
\end{aligned}
$$

An easier way is to use a spreadsheet formula to calculate ${ }_{n} P_{r}$:

$$
=P E R M U T(n, r)
$$

To compute the number of ways a class of 600 can elect three officers, use

$$
=\text { PERMUT(600,3) }=214,921,200
$$

Permutations

As we can see, the number of permutations becomes large very quickly as n and r are increased.

Permutations

As we can see, the number of permutations becomes large very quickly as n and r are increased.
This phenomenon is rather appropriately called combinatorial explosion

Permutations

As we can see, the number of permutations becomes large very quickly as n and r are increased.
This phenomenon is rather appropriately called combinatorial explosion
In summary, a permutation is the number of ways to arrange of r out of n objects if:

- The n objects are distinct
- There is no repitition in the list
- Order is important

Permutations

Example: At the start of the season, a betting pool on a league with 22 teams is based on predicting the first three teams at the end of the season. How many different bets are possible?

Permutations

Example: At the start of the season, a betting pool on a league with 22 teams is based on predicting the first three teams at the end of the season. How many different bets are possible?
Since the order matters, this is a permutation of 3 objects out of 22 , and the formula is:
=PERMUT(22,3)=9,240

Permutations

Example: How many four letter words can be formed from the 26 letters of the alphabet (assuming they don't have to be pronounceable)?

Permutations

Example: How many four letter words can be formed from the 26 letters of the alphabet (assuming they don't have to be pronounceable)?
Again the order matters, this is a permutation of 4 objects out of 26 , and the formula is:
=PERMUT(26,4)=358,800

Combinations

In many situations we want to select r out of n objects, but the order does not matter.

Combinations

In many situations we want to select r out of n objects, but the order does not matter.

A combination is an unordered subset.

Combinations

In many situations we want to select r out of n objects, but the order does not matter.

A combination is an unordered subset.
The classic example is "combination plates" offered by many Asian resturaunts.

Combinations

In many situations we want to select r out of n objects, but the order does not matter.

A combination is an unordered subset.
The classic example is "combination plates" offered by many Asian resturaunts.
The number of combinations (unordered subsets) of size r chosen from a set of n objects is:

$$
{ }_{n} C_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

Combinations

In many situations we want to select r out of n objects, but the order does not matter.

A combination is an unordered subset.
The classic example is "combination plates" offered by many Asian resturaunts.
The number of combinations (unordered subsets) of size r chosen from a set of n objects is:

$$
{ }_{n} C_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

Again a spreadsheet formula is easier:
$=C O M B I N(n, r)$

Combinations

Example: An Asian restaurant offers combination plates with any three of 12 choices for items. How many different plates are possible?

Combinations

Example: An Asian restaurant offers combination plates with any three of 12 choices for items. How many different plates are possible?

This is a combination, because order is not important:
(chicken, fried rice, egg roll) is the same dish as:
(egg roll, chicken, fried rice)

Combinations

Example: An Asian restaurant offers combination plates with any three of 12 choices for items. How many different plates are possible?

This is a combination, because order is not important:
(chicken, fried rice, egg roll)
is the same dish as:
(egg roll, chicken, fried rice)
The number of different plates is:

$$
=\operatorname{COMBIN}(12,3)=220
$$

Combinations

Example: An Asian restaurant offers combination plates with any three of 12 choices for items. How many different plates are possible?

This is a combination, because order is not important:
(chicken, fried rice, egg roll)
is the same dish as:
(egg roll, chicken, fried rice)
The number of different plates is:

$$
=\operatorname{COMBIN}(12,3)=220
$$

Combinations

Example: An Asian restaurant offers combination plates with any three of 12 choices for items. How many different plates are possible?

This is a combination, because order is not important:
(chicken, fried rice, egg roll)
is the same dish as:
(egg roll, chicken, fried rice)
The number of different plates is:

$$
=\operatorname{COMBIN}(12,3)=220
$$

Combinations

Example: A state lottery chooses six of the numbers from 1 to 50 at random. Assuming all numbers are equally likely to be chosen, what is the probability that a purchaser of a single ticket picks the six winning numbers? (assume order does not matter)

Combinations

Example: A state lottery chooses six of the numbers from 1 to 50 at random. Assuming all numbers are equally likely to be chosen, what is the probability that a purchaser of a single ticket picks the six winning numbers? (assume order does not matter)
The number of possible combinations is

$$
=\operatorname{COMBIN}(50,6)=15,890,700
$$

Combinations

Example: A state lottery chooses six of the numbers from 1 to 50 at random. Assuming all numbers are equally likely to be chosen, what is the probability that a purchaser of a single ticket picks the six winning numbers? (assume order does not matter)

The number of possible combinations is

$$
=\operatorname{COMBIN}(50,6)=15,890,700
$$

Assuming the combinations are equally likely, the probability that the numbers the ticket holder played comes up is:

$$
\frac{\text { number of combinations played }}{\text { total number of combinations }}=\frac{1}{15,890,700}
$$

Combinations and Permutations

Example: Now suppose the order does matter.

Combinations and Permutations

Example: Now suppose the order does matter.
The number of possible permutations is

$$
=\text { PERMUT }(50,6)=11,441,304,000
$$

Combinations and Permutations

Example: Now suppose the order does matter.
The number of possible permutations is

$$
=\text { PERMUT }(50,6)=11,441,304,000
$$

Assuming the permutations are equally likely, the probability that the numbers the ticket holder played come up in order is:

$$
\frac{\text { number of permutations played }}{\text { total permutations }}=\frac{1}{11,441,304,000}
$$

Permutations with Nondistinct Items

Suppose we have some of each of k different kinds of objects, for a total of n.

Permutations with Nondistinct Items

Suppose we have some of each of k different kinds of objects, for a total of n.

If the number of objects of kind i is $n_{i}, i=1,2, \ldots, k$ the number of arrangements (permutations) is:

$$
\frac{n!}{n_{1}!\cdot n_{2}!\cdots n_{k}!}
$$

where $n_{1}+n_{2}+\cdots+n_{k}=n$

