
Cylindrical Shells Method
Suppose we want to find the volume obtained by revolving
the parabola y = x2 between y = 0 and y = 1 about the
y-axis.
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Suppose we want to find the volume obtained by revolving
the parabola y = x2 between y = 0 and y = 1 about the
y-axis.

We can use the circular disk method to revolve the graph of
a function about the x-axis, but how do we handle this
situation?

An obvious solution is to just interchange the roles of x and
y. The graph of y = x2 is identical to the graph of x =

√
y

So we can just relabel the axes and consider rotating
y =

√
x about the x-axis between x = 0 and x = 1.
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y-axis.

We can use the circular disk method to revolve the graph of
a function about the x-axis, but how do we handle this
situation?

An obvious solution is to just interchange the roles of x and
y. The graph of y = x2 is identical to the graph of x =

√
y

So we can just relabel the axes and consider rotating
y =

√
x about the x-axis between x = 0 and x = 1.

This works as long as we can convert the function y = f(x)
into x = g(y), but this may not be easy.
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Cylindrical Shells Method
An alternative is the cylindrical shells method.

Consider two cylinders with a common center axis, both
with height h
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Suppose the smaller one has radius r1 and the larger has
radius r2

Then the volumes are, respectively,

V1 = πr2

1h and V2 = πr2

2h
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Cylindrical Shells Method
An alternative is the cylindrical shells method.

Consider two cylinders with a common center axis, both
with height h

Suppose the smaller one has radius r1 and the larger has
radius r2

Then the volumes are, respectively,

V1 = πr2

1h and V2 = πr2

2h

The difference in the two volumes is:

V2 − V1 = πh(r2

2 − r2

1) = πh(r2 + r1)(r2 − r1)
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Cylindrical Shells Method
We can simplify the expression

V2 − V1 = πh(r2 + r1)(r2 − r1)

by letting

∆r = r2 − r1 and r =
r2 + r1

2
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Cylindrical Shells Method
We can simplify the expression

V2 − V1 = πh(r2 + r1)(r2 − r1)

by letting

∆r = r2 − r1 and r =
r2 + r1
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Then by substitution we get

V2 − V1 = 2πrh∆r
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Cylindrical Shells Method
We can simplify the expression

V2 − V1 = πh(r2 + r1)(r2 − r1)

by letting

∆r = r2 − r1 and r =
r2 + r1

2

Then by substitution we get

V2 − V1 = 2πrh∆r

This is the volume of a cylindrical shell with height h,
average radius r, and thickness ∆r.
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Cylindrical Shells Method
Another way to visualize this is to consider that we are
finding the area of a cylider whose radius at the base is x
and whose height is f(x).
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Cylindrical Shells Method
Another way to visualize this is to consider that we are
finding the area of a cylider whose radius at the base is x
and whose height is f(x).

The instantaneous rate of change of the volume with
respect to x is the surface area of that cylinder, so

dV

dx
= 2πx · f(x) and so V = 2π

∫ b

a

x · f(x) dx
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Question 1

The integral representing the area under the curve y = x2

from x = 0 to x = 1 revolved around the y-axis is:

1. 2π
∫

1

0
x3dx 4. π

∫
1

0
x3dx

2. 2π
∫

1

0
πx2dx 5. π

∫
1

0
x2dx

3. 2π
∫

1

0
xdx 6. none of the above
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1. 2π
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Question 2
The integral representing the area under the curve y = 1/x
from x = 1 to x = 2 revolved around the y-axis is:

1. 2π
∫

2

1
xdx 4. 2π

∫
2

1
dx

2. 2π
∫

2

1
1/x2dx 5. 2π

∫
2

1
2dx

3. 2π
∫

2

1
x2dx 6. none of the above
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Question 2
The integral representing the area under the curve y = 1/x
from x = 1 to x = 2 revolved around the y-axis is:

1. 2π
∫

2

1
xdx 4. 2π

∫
2

1
dx

2. 2π
∫

2

1
1/x2dx 5. 2π

∫
2

1
2dx

3. 2π
∫

2

1
x2dx 6. none of the above

4. 2π
∫

1

0
dx = 2π
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Question 3
The integral representing the area between the curves
y = x3 and y = x from x = 0 to x = 1 revolved around the
y-axis is:

1. 2π
∫

1

0
x4dx 4. 2π

∫
1

0
(x4

− x2)dx

2. 2π
∫

1

0
(x2

− x4)dx 5. 2π
∫

1

0
(x2

− 1)dx

3. 2π
∫

1

0
(x3

− x)dx 6. none of the above
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Question 3
The integral representing the area between the curves
y = x3 and y = x from x = 0 to x = 1 revolved around the
y-axis is:

1. 2π
∫

1

0
x4dx 4. 2π

∫
1

0
(x4

− x2)dx

2. 2π
∫

1

0
(x2

− x4)dx 5. 2π
∫

1

0
(x2

− 1)dx

3. 2π
∫

1

0
(x3

− x)dx 6. none of the above

2. 2π
∫

1

0
(x2

− x4)dx = 4π/15
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