Suppose we want to find the volume obtained by revolving the parabola $y = x^2$ between y = 0 and y = 1 about the *y*-axis.

Suppose we want to find the volume obtained by revolving the parabola $y = x^2$ between y = 0 and y = 1 about the *y*-axis.

We can use the circular disk method to revolve the graph of a function about the *x*-axis, but how do we handle this situation?

Suppose we want to find the volume obtained by revolving the parabola $y = x^2$ between y = 0 and y = 1 about the *y*-axis.

We can use the circular disk method to revolve the graph of a function about the *x*-axis, but how do we handle this situation?

An obvious solution is to just interchange the roles of x and y. The graph of $y = x^2$ is identical to the graph of $x = \sqrt{y}$

So we can just relabel the axes and consider rotating $y = \sqrt{x}$ about the *x*-axis between x = 0 and x = 1.

Suppose we want to find the volume obtained by revolving the parabola $y = x^2$ between y = 0 and y = 1 about the *y*-axis.

We can use the circular disk method to revolve the graph of a function about the *x*-axis, but how do we handle this situation?

An obvious solution is to just interchange the roles of x and y. The graph of $y = x^2$ is identical to the graph of $x = \sqrt{y}$

So we can just relabel the axes and consider rotating $y = \sqrt{x}$ about the *x*-axis between x = 0 and x = 1.

This works as long as we can convert the function y = f(x) into x = g(y), but this may not be easy.

An alternative is the cylindrical shells method.

Consider two cylinders with a common center axis, both with height h

An alternative is the cylindrical shells method.

Consider two cylinders with a common center axis, both with height h

Suppose the smaller one has radius r_1 and the larger has radius r_2

Then the volumes are, respectively,

$$V_1 = \pi r_1^2 h$$
 and $V_2 = \pi r_2^2 h$

An alternative is the cylindrical shells method.

Consider two cylinders with a common center axis, both with height \boldsymbol{h}

Suppose the smaller one has radius r_1 and the larger has radius r_2

Then the volumes are, respectively,

$$V_1 = \pi r_1^2 h$$
 and $V_2 = \pi r_2^2 h$

The difference in the two volumes is:

$$V_2 - V_1 = \pi h(r_2^2 - r_1^2) = \pi h(r_2 + r_1)(r_2 - r_1)$$

We can simplify the expression

$$V_2 - V_1 = \pi h(r_2 + r_1)(r_2 - r_1)$$

by letting

$$\Delta r = r_2 - r_1$$
 and $r = \frac{r_2 + r_1}{2}$

We can simplify the expression

$$V_2 - V_1 = \pi h(r_2 + r_1)(r_2 - r_1)$$

by letting

$$\Delta r = r_2 - r_1$$
 and $r = \frac{r_2 + r_1}{2}$

Then by substitution we get

$$V_2 - V_1 = 2\pi r h \Delta r$$

We can simplify the expression

$$V_2 - V_1 = \pi h(r_2 + r_1)(r_2 - r_1)$$

by letting

$$\Delta r = r_2 - r_1$$
 and $r = \frac{r_2 + r_1}{2}$

Then by substitution we get

$$V_2 - V_1 = 2\pi r h \Delta r$$

This is the volume of a cylindrical shell with height h, average radius r, and thickness Δr .

Another way to visualize this is to consider that we are finding the area of a cylider whose radius at the base is x and whose height is f(x).

Another way to visualize this is to consider that we are finding the area of a cylider whose radius at the base is x and whose height is f(x).

The instantaneous rate of change of the volume with respect to x is the surface area of that cylinder, so

$$\frac{dV}{dx} = 2\pi x \cdot f(x)$$
 and so $V = 2\pi \int_{a}^{b} x \cdot f(x) dx$

The integral representing the area under the curve $y = x^2$ from x = 0 to x = 1 revolved around the y-axis is:

1.
$$2\pi \int_0^1 x^3 dx$$
 4. $\pi \int_0^1 x^3 dx$

2.
$$2\pi \int_0^1 \pi x^2 dx$$
 5. $\pi \int_0^1 x^2 dx$

3. $2\pi \int_0^1 x dx$ 6. none of the above

The integral representing the area under the curve $y = x^2$ from x = 0 to x = 1 revolved around the y-axis is:

1.
$$2\pi \int_0^1 x^3 dx$$
 4. $\pi \int_0^1 x^3 dx$

2.
$$2\pi \int_0^1 \pi x^2 dx$$
 5. $\pi \int_0^1 x^2 dx$

3. $2\pi \int_0^1 x dx$ 6. none of the above

1.
$$2\pi \int_0^1 x^3 dx$$

The integral representing the area under the curve y = 1/xfrom x = 1 to x = 2 revolved around the y-axis is:

1.
$$2\pi \int_{1}^{2} x dx$$
 4. $2\pi \int_{1}^{2} dx$

2.
$$2\pi \int_1^2 1/x^2 dx$$
 5. $2\pi \int_1^2 2dx$

3. $2\pi \int_1^2 x^2 dx$ 6. none of the above

The integral representing the area under the curve y = 1/xfrom x = 1 to x = 2 revolved around the y-axis is:

1.
$$2\pi \int_{1}^{2} x dx$$
 4. $2\pi \int_{1}^{2} dx$

2.
$$2\pi \int_1^2 1/x^2 dx$$
 5. $2\pi \int_1^2 2dx$

3. $2\pi \int_1^2 x^2 dx$ 6. none of the above

4.
$$2\pi \int_0^1 dx = 2\pi$$

The integral representing the area between the curves $y = x^3$ and y = x from x = 0 to x = 1 revolved around the *y*-axis is:

1.
$$2\pi \int_0^1 x^4 dx$$
 4. $2\pi \int_0^1 (x^4 - x^2) dx$

2.
$$2\pi \int_0^1 (x^2 - x^4) dx$$
 5. $2\pi \int_0^1 (x^2 - 1) dx$

3. $2\pi \int_0^1 (x^3 - x) dx$ 6. none of the above

The integral representing the area between the curves $y = x^3$ and y = x from x = 0 to x = 1 revolved around the *y*-axis is:

1.
$$2\pi \int_0^1 x^4 dx$$
 4. $2\pi \int_0^1 (x^4 - x^2) dx$

2.
$$2\pi \int_0^1 (x^2 - x^4) dx$$
 5. $2\pi \int_0^1 (x^2 - 1) dx$

3.
$$2\pi \int_0^1 (x^3 - x) dx$$
 6. none of the above

2.
$$2\pi \int_0^1 (x^2 - x^4) dx = 4\pi/15$$