Areas Between Curves

Suppose f and g are continuous, and $f(x) \geq g(x)$ for $a \leq x \leq b$.

Areas Between Curves

Suppose f and g are continuous, and $f(x) \geq g(x)$ for $a \leq x \leq b$.

Then the area bounded:

- above by the graph of $f(x)$
- below by the graph of $g(x)$
- on the left by the vertical line $x=a$
- on the right by the vertical line $x=b$ is given by:

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Areas Between Curves

Suppose f and g are continuous, and $f(x) \geq g(x)$ for $a \leq x \leq b$.

Then the area bounded:

- above by the graph of $f(x)$
- below by the graph of $g(x)$
- on the left by the vertical line $x=a$
- on the right by the vertical line $x=b$ is given by:

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

The assumption that $f(x)-g(x) \geq 0$ on $[a, b]$ is necessary.

Areas Between Curves

Example: Find the area between the curves $y=x$ and $y=x+1$ between $x=0$ and $x=1$

Areas Between Curves

Example: Find the area between the curves $y=x$ and $y=x+1$ between $x=0$ and $x=1$

Let $f(x)=x+1$ and $g(x)=x$, then $f(x) \geq g(x)$ for $x \in[0,1]$, so the area is

$$
A=\int_{0}^{1}[(x+1)-x] d x
$$

Areas Between Curves

Example: Find the area between the curves $y=x$ and $y=x+1$ between $x=0$ and $x=1$

Let $f(x)=x+1$ and $g(x)=x$, then $f(x) \geq g(x)$ for $x \in[0,1]$, so the area is

$$
\begin{gathered}
A=\int_{0}^{1}[(x+1)-x] d x \\
\left.=\int_{0}^{1} 1 d x=x\right]_{0}^{1}=1-0=1
\end{gathered}
$$

Areas Between Curves

Example: Find the area between the curves $y=e^{x}$ and $y=e^{-x}$ between $x=0$ and $x=1$

Areas Between Curves

Example: Find the area between the curves $y=e^{x}$ and $y=e^{-x}$ between $x=0$ and $x=1$

Let $f(x)=e^{x}$ and $g(x)=e^{-x}$, then $f(x) \geq g(x)$ for $x \in[0,1]$, so the area is

$$
A=\int_{0}^{1}\left[e^{x}-e^{-x}\right] d x=\int_{0}^{1} e^{x} d x-\int_{0}^{1} e^{-x} d x
$$

Areas Between Curves

Example: Find the area between the curves $y=e^{x}$ and $y=e^{-x}$ between $x=0$ and $x=1$

Let $f(x)=e^{x}$ and $g(x)=e^{-x}$, then $f(x) \geq g(x)$ for $x \in[0,1]$, so the area is

$$
\begin{gathered}
A=\int_{0}^{1}\left[e^{x}-e^{-x}\right] d x=\int_{0}^{1} e^{x} d x-\int_{0}^{1} e^{-x} d x \\
\left.=\left(e^{x}+e^{-x}\right)\right]_{0}^{1}=e+e^{-1}-2
\end{gathered}
$$

Question 1

Find the area between the curves

$$
x \text { and } x^{3} \quad \text { between } x=0 \text { and } x=1
$$

1. $1 / 4$
2. $1 / 2$
3. 3
4. 2
5. none of the above

Question 1

Find the area between the curves

$$
x \text { and } x^{3} \quad \text { between } x=0 \text { and } x=1
$$

1. $1 / 4$
2. 1
3. $1 / 2$
4. 3
5. 2
6. none of the above
7. $A=1 / 4$

Question 2

Find the area between the curves

$$
\cos x \text { and } \sin x \quad \text { between } x=0 \text { and } x=\frac{\pi}{4}
$$

1. $\sqrt{2}$. 1
2. $\sqrt{2} / 2 \quad 5$. $\sqrt{2}-3$
3. $\sqrt{2}-1 \quad 6$. none of the above

Question 2

Find the area between the curves

$$
\cos x \text { and } \sin x \quad \text { between } x=0 \text { and } x=\frac{\pi}{4}
$$

1. $\begin{aligned} \sqrt{2} & 4.1\end{aligned}$
2. $\sqrt{2} / 2 \quad 5$. $\sqrt{2}-3$
3. $\sqrt{2}-1 \quad 6$. none of the above
4. $A=\sqrt{2}-1$

Areas Between Curves

If neither $f(x) \geq g(x)$ nor $g(x) \geq f(x)$ on $[a, b]$, then the previous formula cannot be used for the entire interval.

Areas Between Curves

If neither $f(x) \geq g(x)$ nor $g(x) \geq f(x)$ on $[a, b]$, then the previous formula cannot be used for the entire interval. Instead, we have to break the interval into subintervals where either $f(x) \geq g(x)$ or $g(x) \geq f(x)$.

Areas Between Curves

If neither $f(x) \geq g(x)$ nor $g(x) \geq f(x)$ on $[a, b]$, then the previous formula cannot be used for the entire interval. Instead, we have to break the interval into subintervals where either $f(x) \geq g(x)$ or $g(x) \geq f(x)$.
Then on the subintervals where $f(x) \geq g(x)$, apply the formula

$$
A_{i}=\int(f(x)-g(x)) d x
$$

Areas Between Curves

If neither $f(x) \geq g(x)$ nor $g(x) \geq f(x)$ on $[a, b]$, then the previous formula cannot be used for the entire interval. Instead, we have to break the interval into subintervals where either $f(x) \geq g(x)$ or $g(x) \geq f(x)$.
Then on the subintervals where $f(x) \geq g(x)$, apply the formula

$$
A_{i}=\int(f(x)-g(x)) d x
$$

On the subintervals where $g(x) \geq f(x)$, instead apply the formula

$$
A_{i}=\int(g(x)-f(x)) d x
$$

Areas Between Curves

Example: Find the area between the curves $y=\cos x$ and $y=\sin x$ between $x=0$ and $x=\pi / 2$

Areas Between Curves

Example: Find the area between the curves $y=\cos x$ and $y=\sin x$ between $x=0$ and $x=\pi / 2$

In this case,

- $\cos x \geq \sin x$ when $0 \leq x \leq \pi / 4$
- $\cos x \leq \sin x$ when $\pi / 4 \leq x \leq \pi / 2$

Areas Between Curves

Example: Find the area between the curves $y=\cos x$ and $y=\sin x$ between $x=0$ and $x=\pi / 2$

In this case,

- $\cos x \geq \sin x$ when $0 \leq x \leq \pi / 4$
- $\cos x \leq \sin x$ when $\pi / 4 \leq x \leq \pi / 2$

We have to split

$$
A=\int_{0}^{\pi / 2}|\cos x-\sin x| d x
$$

into two parts. The graphs cross at $x=\pi / 4$ in this case.

Areas Between Curves

$$
\begin{gathered}
\int_{0}^{\pi / 2}|\cos x-\sin x| d x \\
=\int_{0}^{\pi / 4}[\cos x-\sin x] d x+\int_{\pi / 4}^{\pi / 2}[\sin x-\cos x] d x
\end{gathered}
$$

Areas Between Curves

$$
\begin{gathered}
\int_{0}^{\pi / 2}|\cos x-\sin x| d x \\
=\int_{0}^{\pi / 4}[\cos x-\sin x] d x+\int_{\pi / 4}^{\pi / 2}[\sin x-\cos x] d x \\
=(\sqrt{2}-1)+(\sqrt{2}-1)=2 \sqrt{2}-2
\end{gathered}
$$

Areas Between Curves

$$
\begin{gathered}
\int_{0}^{\pi / 2}|\cos x-\sin x| d x \\
=\int_{0}^{\pi / 4}[\cos x-\sin x] d x+\int_{\pi / 4}^{\pi / 2}[\sin x-\cos x] d x \\
=(\sqrt{2}-1)+(\sqrt{2}-1)=2 \sqrt{2}-2
\end{gathered}
$$

The difficult part of this type of problem is usually finding the points where the curves of f and g cross.

Question 3

Find the area between the curves
x^{3} and x between $x=-1$ and $x=1$

1. $1 / 3$
2. 1
3. $1 / 4$
4. $1 / 2$
5. 0
6. none of the above

Question 3

Find the area between the curves
x^{3} and $x \quad$ between $x=-1$ and $x=1$

1. $1 / 3$
2. 1
3. $1 / 4 \quad 5.1 / 2$
4. 0
5. none of the above
6. $A=1 / 2$

Question 4

Find the area between the curves

$$
y=2 x+1 \text { and } y=-x+4 \quad \text { between } x=0 \text { and } x=2
$$

1. $1 / 3$
2. 3
3. $1 / 4$
4. $1 / 2$
5. 2
6. none of the above

Question 4

Find the area between the curves

$$
y=2 x+1 \text { and } y=-x+4 \quad \text { between } x=0 \text { and } x=2
$$

1. $1 / 3 \quad 4.3$
2. $1 / 4 \quad 5.1 / 2$
3. 2 6. none of the above
4. $A=3$ The graphs intersect at $x=1$.

Question 5

Find the region bounded by the curves

$$
y=4 x-x^{2} \text { and } y=x^{2}
$$

1. $8 / 3$
2. 3
3. $4 / 3$
4. $1 / 8$
5. $2 / 3$
6. none of the above

Question 5

Find the region bounded by the curves

$$
y=4 x-x^{2} \text { and } y=x^{2}
$$

1. $8 / 3$
2. 3
3. $4 / 3$
4. $1 / 8$
5. $2 / 3$
6. none of the above
7. $A=8 / 3$ The graphs intersect at $x=0$ and $x=2$.

Question 6

Find the region bounded by the curves

$$
y=\sin (\pi x / 2) \text { and } y=x^{2}-2 x
$$

1. $4 / 3$
2. $3 / \pi$
3. $\pi / 3$
4. $3 \pi / 8$
5. $4 / 3+4 / \pi \quad 6$. none of the above

Question 6

Find the region bounded by the curves

$$
y=\sin (\pi x / 2) \text { and } y=x^{2}-2 x
$$

1. $4 / 3$
2. $3 / \pi$
3. $\pi / 3$
4. $3 \pi / 8$
5. $4 / 3+4 / \pi \quad 6$. none of the above
6. $A=4 / 3+4 / \pi$ The graphs intersect at $x=0$ and $x=2$.
