If we add the first few terms of the infinite sum

$$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$

it appears that the sum is getting closer and closer to 1.

If we add the first few terms of the infinite sum

$$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$

it appears that the sum is getting closer and closer to 1.

Years ago we defined addition as a binary operation, but our definition says nothing about an infinite sum.

If we add the first few terms of the infinite sum

$$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$

it appears that the sum is getting closer and closer to 1.

Years ago we defined addition as a binary operation, but our definition says nothing about an infinite sum.

As a result, we really need some new definitions if we want to speak intelligently about infinite sums.

As usual, we try to avoid an expression explicitly involving ∞ through the use of a limit as some index n becomes larger and larger without any upper bound.

As usual, we try to avoid an expression explicitly involving ∞ through the use of a limit as some index n becomes larger and larger without any upper bound.

So we consider the **sequence** s_1, s_2, s_3, \ldots of *partial sums*,

$$s_1 = a_1$$

 $s_2 = a_1 + a_2$
 $s_3 = a_1 + a_2 + a_3$
 $s_4 = a_1 + a_2 + a_3 + a_4$
 \vdots \vdots

As usual, we try to avoid an expression explicitly involving ∞ through the use of a limit as some index n becomes larger and larger without any upper bound.

So we consider the **sequence** s_1, s_2, s_3, \ldots of *partial sums*,

$$s_1 = a_1$$

 $s_2 = a_1 + a_2$
 $s_3 = a_1 + a_2 + a_3$
 $s_4 = a_1 + a_2 + a_3 + a_4$
 \vdots \vdots

or

$$s_n = \sum_{i=1}^n a_i$$

Definition: Given a series $a_1 + a_2 + a_3 + \cdots$, let s_n denote the n^{th} partial sum

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$$

Definition: Given a series $a_1 + a_2 + a_3 + \cdots$, let s_n denote the n^{th} partial sum

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$$

If the sequence $\{s_n\}$ is convergent and there is a real number s such that

$$\lim_{n \to \infty} s_n = s$$

then the series is said to be convergent and we write

$$\sum_{i=1}^{n} a_i = s$$

Definition: Given a series $a_1 + a_2 + a_3 + \cdots$, let s_n denote the n^{th} partial sum

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$$

If the sequence $\{s_n\}$ is convergent and there is a real number s such that

$$\lim_{n \to \infty} s_n = s$$

then the series is said to be convergent and we write

$$\sum_{i=1}^{n} a_n = s$$

Otherwise, we say that the series is divergent

The **geometric series**

$$1 + r + r^2 + r^3 + \dots = \sum_{i=1}^{\infty} r^{n-1}$$

converges if |r| < 1.

The **geometric series**

$$1 + r + r^2 + r^3 + \dots = \sum_{i=1}^{\infty} r^{n-1}$$

converges if |r| < 1.

In this case, the sum is

$$\sum_{i=1}^{\infty} r^{n-1} = \frac{1}{1-r} \quad \text{if} \quad |r| < 1$$

The geometric series

$$1 + r + r^2 + r^3 + \dots = \sum_{i=1}^{\infty} r^{n-1}$$

converges if |r| < 1.

In this case, the sum is

$$\sum_{i=1}^{\infty} r^{n-1} = \frac{1}{1-r} \quad \text{if} \quad |r| < 1$$

If $|r| \geq 1$, the geometric series is **divergent**

More generally, the author write the geometric series with a constant multiplier *a*:

$$a1 + ar + ar^2 + ar^3 + \dots = \sum_{i=1}^{\infty} ar^{n-1} = a \sum_{i=1}^{\infty} r^{n-1}$$

More generally, the author write the geometric series with a constant multiplier *a*:

$$a1 + ar + ar^2 + ar^3 + \dots = \sum_{i=1}^{\infty} ar^{n-1} = a \sum_{i=1}^{\infty} r^{n-1}$$

In this case, the sum is

$$a\sum_{i=1}^{\infty} r^{n-1} = a\left(\frac{1}{1-r}\right) = \frac{a}{1-r} \quad \text{if} \quad |r| < 1$$

More generally, the author write the geometric series with a constant multiplier *a*:

$$a1 + ar + ar^{2} + ar^{3} + \dots = \sum_{i=1}^{\infty} ar^{n-1} = a \sum_{i=1}^{\infty} r^{n-1}$$

In this case, the sum is

$$a\sum_{i=1}^{\infty} r^{n-1} = a\left(\frac{1}{1-r}\right) = \frac{a}{1-r} \quad \text{if} \quad |r| < 1$$

If $|r| \geq 1$, the geometric series is **divergent**

A necessary condition for a series $a_1 + a_2 + a_3 + \cdots$ to converge is the following:

$$\lim_{n \to \infty} a_n = 0$$

A necessary condition for a series $a_1 + a_2 + a_3 + \cdots$ to converge is the following:

$$\lim_{n \to \infty} a_n = 0$$

By a *neccesary* condition, we mean a condition that must be true if the series is convergent.

A necessary condition for a series $a_1 + a_2 + a_3 + \cdots$ to converge is the following:

$$\lim_{n \to \infty} a_n = 0$$

By a *neccesary* condition, we mean a condition that must be true if the series is convergent.

If the series is **not** convergent, nothing can be said about $\lim_{n\to\infty} a_n$.

A necessary condition for a series $a_1 + a_2 + a_3 + \cdots$ to converge is the following:

$$\lim_{n\to\infty} a_n = 0$$

By a *neccesary* condition, we mean a condition that must be true if the series is convergent.

If the series is **not** convergent, nothing can be said about $\lim_{n\to\infty} a_n$.

There are examples of divergent series where a_n converges to zero, and examples where a_n does not converge to zero.

A necessary condition for a series $a_1 + a_2 + a_3 + \cdots$ to converge is the following:

$$\lim_{n\to\infty} a_n = 0$$

By a *neccesary* condition, we mean a condition that must be true if the series is convergent.

If the series is **not** convergent, nothing can be said about $\lim_{n\to\infty} a_n$.

There are examples of divergent series where a_n converges to zero, and examples where a_n does not converge to zero.

What **can** be said is that if the *sequence* $\{a_n\}$ does **not** converge to zero, then the *series* $a_1 + a_2 + \cdots$ is divergent.

Determine whether the series converges or diverges. If it converges, find the sum.

$$1 + \frac{1}{5} + \frac{1}{25} + \frac{1}{125} + \cdots$$

1. 1

4. $\frac{6}{5}$

2. $\frac{4}{5}$

5. diverges

3. $\frac{5}{4}$

6. none of the above

Determine whether the series converges or diverges. If it converges, find the sum.

$$1 + \frac{1}{5} + \frac{1}{25} + \frac{1}{125} + \cdots$$

1. 1

4. $\frac{6}{5}$

2. $\frac{4}{5}$

5. diverges

3. $\frac{5}{4}$

6. none of the above

3. $\frac{5}{4}$

Solution

This is a geometric series with

$$r = \frac{1}{5}$$

The series converges because |r| < 1. The sum is

$$\sum_{n=1}^{\infty} \frac{1}{5^{(n-1)}} = \frac{1}{1 - \frac{1}{5}} = \frac{1}{\frac{4}{5}} = \frac{5}{4}$$

Determine whether the series converges or diverges. If it converges, find the sum.

$$1 - \frac{1}{5} + \frac{1}{25} - \frac{1}{125} + \cdots$$

1. 1

4. $\frac{5}{6}$

- 2. $\frac{4}{5}$
- 5. diverges

3. $\frac{5}{4}$

6. none of the above

Determine whether the series converges or diverges. If it converges, find the sum.

$$1 - \frac{1}{5} + \frac{1}{25} - \frac{1}{125} + \cdots$$

1. 1

4. $\frac{5}{6}$

2. $\frac{4}{5}$

5. diverges

3. $\frac{5}{4}$

6. none of the above

4. $\frac{5}{6}$

Solution

This is a geometric series with

$$r = -\frac{1}{5}$$

The series converges because |r| < 1. The sum is

$$\sum_{n=1}^{\infty} \left(-\frac{1}{5} \right)^{(n-1)} = \frac{1}{1 + \frac{1}{5}} = \frac{1}{\frac{6}{5}} = \frac{5}{6}$$

Determine whether the series converges or diverges. If it converges, find the sum.

$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$$

1. 1

4. $\frac{6}{5}$

- 2. $\frac{4}{5}$
- 5. diverges
- 3. $\frac{5}{4}$

6. none of the above

Determine whether the series converges or diverges. If it converges, find the sum.

$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$$

1. 1

4. $\frac{6}{5}$

- 2. $\frac{4}{5}$
- 5. diverges
- 3. $\frac{5}{4}$

6. none of the above

1. 1

Solution

This is a telescoping sum:

$$\left(\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}\right) + \left(\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}}\right) + \cdots$$

The series converges because the terms approach zero and only the first and last terms appear in the partial sum,

$$s_n = \frac{1}{1} - \frac{1}{\sqrt{n+1}}$$

so $s_n \to 1$ as $n \to \infty$.

Determine whether the series converges or diverges. If it converges, find the sum.

$$\frac{1}{25} + \frac{1}{125} + \frac{1}{625} + \cdots$$

1. 1

4. $\frac{5}{20}$

- 2. $\frac{1}{20}$
- 5. diverges
- 3. $\frac{1}{4}$

6. none of the above

Determine whether the series converges or diverges. If it converges, find the sum.

$$\frac{1}{25} + \frac{1}{125} + \frac{1}{625} + \cdots$$

1. 1

4. $\frac{5}{20}$

- 2. $\frac{1}{20}$
- 5. diverges

3. $\frac{1}{4}$

6. none of the above

2. $\frac{1}{20}$

Solution

This is a geometric series with

$$r = \frac{1}{5}$$
 and $a = \frac{1}{25}$

The series converges because |r| < 1. The sum is

$$\sum_{n=1}^{\infty} \frac{1}{25} \frac{1}{5^{(n-1)}} = \frac{1}{25} \frac{1}{\left(1 - \frac{1}{5}\right)} = \frac{1}{25} \frac{1}{\frac{4}{5}} = \frac{1}{20}$$

Determine whether the series converges or diverges. If it converges, find the sum.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \cdots$$

1. 1

4. $\frac{5}{20}$

- 2. $\frac{1}{20}$
- 5. diverges

3. $\frac{1}{4}$

6. none of the above

Determine whether the series converges or diverges. If it converges, find the sum.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \cdots$$

1. 1

4. $\frac{5}{20}$

- 2. $\frac{1}{20}$
- 5. diverges
- 3. $\frac{1}{4}$

6. none of the above

5. diverges

Solution

This is the harmonic series multiplied by 1/2, so it diverges.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \cdots$$

$$= \frac{1}{2} \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots \right)$$