1. Integration Formulas

Constants of integration have been omitted.

$$\int \sec^2 x \, dx = \tan x \tag{1}$$

$$\int \csc^2 x \, dx = -\cot x \tag{2}$$

$$\int \sec x \tan x \, dx = \sec x \tag{3}$$

$$\int \csc x \cot x \, dx = -\csc x \tag{4}$$

$$\int \sec x \, dx = \ln|\sec x + \tan x| \tag{5}$$

$$\int \csc x \, dx = \ln|\csc x - \cot x| \tag{6}$$

$$\int \tan x \, dx = \ln|\sec x| \tag{7}$$

$$\int \cot x \, dx = \ln|\sin x| \tag{8}$$

$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) \tag{9}$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) \tag{10}$$

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| \tag{11}$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln\left|x + \sqrt{x^2 \pm a^2}\right| \tag{12}$$

2. Formulas for Exam 1

$$\int_{1}^{\infty} 1/x^{p}$$
 converges if $p > 1$ diverges other (vise)

$$\sqrt{a^2 - x^2} \quad use \quad a \sin \theta \quad -\pi/2 \le \theta \le \pi/2 \tag{14}$$

$$\sqrt{a^2 + x^2} \quad use \quad a \tan \theta \quad -\pi/2 \le \theta \le \pi/2 \tag{15}$$

$$\sqrt{x^2 - a^2} \quad use \quad a \sec \theta \quad 0 \le \theta \le \pi/2 \tag{16}$$

$$\sqrt{a^2 + x^2}$$
 use $a \tan \theta - \pi/2 \le \theta \le \pi/2$ (15)

$$\sqrt{x^2 - a^2}$$
 use $a \sec \theta$ $0 \le \theta \le \pi/2$ (16)

$$\sin A \cos B = \frac{1}{2} [\sin(A-B) + \sin(A+B)] \qquad (17)$$

$$\sin A \sin B = \frac{1}{2} [\cos(A-B) - \cos(A+B)] \qquad (18)$$

$$\cos A \cos B = \frac{1}{2} [\cos(A-B) + \cos(A+B)] \qquad (19)$$

$$\cos^2 \theta = \frac{1}{2} [1 + \cos 2\theta] \tag{20}$$

$$\sin^2 \theta = \frac{1}{2} [1 - \cos 2\theta] \tag{21}$$

$$|E_S| \le K(b-a)^5/180n^4 \quad where \quad |f^{(4)}(x)| \le K \text{ for } a \le x \le b$$
 (22)

$$|E_T| \le K(b-a)^3/12n^2 \quad where \quad |f''(x)| \le K \text{ for } a \le x \le b$$
 (23)

$$|E_M| \le K(b-a)^3/24n^2 \quad where \quad |f''(x)| \le K \text{ for } a \le x \le b$$
 (24)

(25)

3. Formulas for Exam 2

Taylor series expansion centered at x = a:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n \qquad |x-a| < R$$
$$= f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \frac{f^{(4)}(a)}{4!} (x-a)^4 + \cdots$$

Maclaurin series expansion (special case of Taylor series with a = 0):

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n \qquad |x - a| < R$$
$$= f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \frac{f^{(4)}(0)}{4!} x^4 + \cdots$$

Binomial series: If k is any real number and |x| < 1,

$$(1+x)^k = \sum_{n=0}^{\infty} {k \choose n} x^n$$

$$= 1+kx+\frac{k(k-1)}{2!}x^2 + \frac{k(k-1)(k-2)}{3!}x^3 + \frac{k(k-1)(k-2)(k-3)}{4!}x^4 + \cdots$$

Maclaurin series expansion for e^x

$$e^{x} = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n} \qquad x \in (-\infty, \infty)$$
$$= 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

4. Formulas for Exam 3

The general solution for the first-order linear differential equation

$$\frac{dy}{dx} + P(x)y = Q(x)$$

is

$$y(x) = \frac{1}{I(x)} \left[\int I(x)Q(x)dx + C \right]$$

where

$$I(x) = \exp\left(\int P(x)dx\right)$$

The solution to the logistic equation

$$\frac{dP}{dx} = kP\left(1 - \frac{P}{K}\right)$$

is

$$P(t) = \frac{K}{1 + Ae^{-kt}}$$
 wheere $A = \frac{K - P(0)}{P(0)}$

Recursion formulas for Euler's method:

$$x_{n+1} = x_n + h$$
 $y_{n+1} = y_n + y'_n \cdot h$

Determine y'_n by substituting y_n and x_n into the differential equation.

General solution of homogeneous second order linear differential equation with constant coefficients:

If the auxiliary equation has two real roots r_1 and r_2 the general solution is

$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

If the auxiliary equation has one real root r the general solution is

$$y = c_1 e^{rx} + c_2 x e^{rx}$$

If the auxiliary equation has complex roots $\alpha + \beta i$ and $\alpha - \beta i$ the general solution is

$$y = e^{\alpha x} \left(c_1 \cos \beta x + c_2 \sin \beta x \right)$$

5. Additional Formulas for the Final

The length L of a curve y = f(x) from x = a to x = b is given by

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} dx$$

The surface area of the surface obtained by rotating the curve y = f(x) from x = a to x = b about the x-axis is given by

$$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx$$