MTH126 Final Exam Crib Sheet

1. INTEGRATION FORMULAS

Constants of integration have been omitted.

/se02 T dx
/CSC2 z dx
/ secxtanx dx

cscx cotz dx

/secx dx

cscx dx

/
[ s
/

cot x dx

[+
dx

/ Va? — x?
/ dx

22 — a2

/ dx
Va2 +a?

tanx
—cotw
secx
—cscx
In|secx + tan z|
In|cscx — cot x|
In | sec x|
In | sin x|
1
~tan~! <§>
a a
sin~*! (f)

a
1

—In
2a Tr+a

ln’x+\/a:2ia2‘

Tr—a




2. FORMULAS FOR Exam 1

/ 1/aP converges if p > 1 diverges otheri3¢
1
Va?—z2  use asing —7w/2<60<m7/2 (14)
va?+ 12?2 use atanf —7/2<0<mw/2 (15)
vaz—a? use asech 0<0<m7/2 (16)
1
sinAcos B = §[sin(A — B) +sin(A + B)] (17)
1
sinAsinB = é[cos(A — B) — cos(A+ B)] (18)
1
cosAcosB = §[COS(A — B) + cos(A + B)] (19)
1
cos’f = B [1+ cos 26] (20)
1
sin? = 5[1 — cos 20| (21)
|Es| < K(b—a)®/180n* where |f®(z)] <K fora<z<b (22)
|Er| < K(b—a)*/12n* where |f"(z)] < K fora<z<b (23)
Ey| < K(b—a)*/24n* where |f"(z)| < K fora <z <b 24
|Ex| < K(b—a)*/ [f (@) < <z <
(25)

3. FORMULAS FOR EXAM 2

Taylor series expansion centered at x = a:
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Maclaurin series expansion (special case of Taylor series with a = 0):
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Binomial series: If k is any real number and |z| < 1,
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4. FORMULAS FOR Exam 3

The general solution for the first-order linear differential equation
is

where

The solution to the logistic equation
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Recursion formulas for Euler’s method:

Tnt1 = Tn +h yn+1:yn+y;ﬁh



Determine y,, by substituting y,, and x,, into the differential equation.

General solution of homogeneous second order linear differential equa-
tion with constant coefficients:

If the auxiliary equation has two real roots r; and ry the general
solution is
y = cre"* + coe™?”

If the auxiliary equation has one real root r the general solution is

y=cre" + coxe™

If the auxiliary equation has complex roots a+ i and a— (37 the general
solution is
y = € (cq cos fx + co8in fx)

5. ADDITIONAL FORMULAS FOR THE FINAL

The length L of a curve y = f(z) from = a to = = b is given by
b
L= [+ r@la

The surface area of the surface obtained by rotating the curve y =
f(z) from 2 = a to x = b about the x-axis is given by

5= Corfe)y1 + (o) e



