Name:

1) Match the direction field to the differential equation that best fits:

Eqn:()

a)
$$y' = x^2 y$$

$$d) y' = xy$$

b)
$$y' = x(2 - y)$$

e)
$$y' = y(2+x)$$

c)
$$y' = y(1-x)$$

f)
$$y' = x(1 - y)$$

2) A tank contains 1000L of pure water with 5kg of dissolved salt. Brine containing 0.05kg of salt per liter is pumped in at a rate of 10L/min. The solution is kept thoroughly mixed and 10L/min is removed from a drain at the bottom of the tank. Find an equation for the amount of salt in the tank after t minutes.

3) Find an equation of the curve that passes through the point (1,1) whose slope at the point (x,y) is

$$\frac{\sqrt{y}}{r}$$

4) Solve the initial value problem:

$$xy' + y = \frac{1}{\sqrt{x}}, \qquad y(1) = 1$$

5) Solve the initial value problem:

$$y' + \frac{y}{2} = e^t, \quad y(1) = 0$$

6) Birds and insects are modeled by the equations

$$\frac{dx}{dt} = 0.4x - 0.002xy$$

(1)
$$\frac{dx}{dt} = 0.4x - 0.002xy$$
(2)
$$\frac{dy}{dt} = -0.2y + 0.000008xy$$

Find the equilibrium solution(s), if there are any.

7) Solve the differential equation

$$y'' - 12y' + 4y = 0$$

8) Solve the boundary-value problem

$$y'' + 2y' + 2y = 0$$
, $y(0) = 2$, $y'(0) = 1$

9) Given the initial-value problem

$$y' = x - y, \quad y(0) = 1$$

Use Euler's method with a step size of 0.4 to compute the approximate value of y(1.2)

10) A unknown (but positive) number of flour beetles take up residence in a container of flour. The beetle population grows according to the following equation:

$$P(t) = \frac{1100}{1 + 10e^{-0.02t}}$$

- a) What value does the beetle population approach as t becomes large?
- b) What is the initial size of the beetle population?

The general solution for the first-order linear differential equation

$$\frac{dy}{dx} + P(x)y = Q(x)$$

is

$$y(x) = \frac{1}{I(x)} \left[\int I(x)Q(x)dx + C \right]$$

where

$$I(x) = \exp\left(\int P(x)dx\right)$$

The solution to the logistic equation

$$\frac{dP}{dx} = kP\left(1 - \frac{P}{K}\right)$$

is

$$P(t) = \frac{K}{1 + Ae^{-kt}} \quad \text{where} \quad A = \frac{K - P(0)}{P(0)}$$

Recursion formulas for Euler's method:

$$x_{n+1} = x_n + h$$
 $y_{n+1} = y_n + y'_n \cdot h$

Determine y'_n by substituting y_n and x_n into the differential equation.

General solution of homogeneous second order linear differential equation with constant coefficients:

If the auxiliary equation has two real roots r_1 and r_2 the general solution is

$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

If the auxiliary equation has one real root r the general solution is

$$y = c_1 e^{rx} + c_2 x e^{rx}$$

If the auxiliary equation has complex roots $\alpha + \beta i$ and $\alpha - \beta i$ the general solution is

$$y = e^{\alpha x} \left(c_1 \cos \beta x + c_2 \sin \beta x \right)$$

Integration Formulas

(14)

Constants of integration have been omitted.

$$(3) \qquad \int \sec^2 x \, dx = \tan x$$

$$(4) \qquad \int \csc^2 x \, dx = -\cot x$$

$$(5) \qquad \int \sec x \tan x \, dx = \sec x$$

$$(6) \qquad \int \csc x \cot x \, dx = -\csc x$$

$$(7) \qquad \int \sec x \, dx = \ln|\sec x + \tan x|$$

$$(8) \qquad \int \csc x \, dx = \ln|\csc x - \cot x|$$

$$(9) \qquad \int \tan x \, dx = \ln|\sec x|$$

$$(10) \qquad \int \cot x \, dx = \ln|\sin x|$$

$$(11) \qquad \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right)$$

$$(12) \qquad \int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \left(\frac{x}{a}\right)$$

$$(13) \qquad \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left|\frac{x - a}{x + a}\right|$$

 $\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right|$