MA126 Exam 1 Version 1

Name:

1) Find the form of the partial fractions expansion for the following integrand. DO NOT determine the values of the coefficients.

$$
\frac{x^{2}+2 x+1}{x(x+1)^{2}\left(x^{2}+2\right)^{2}}
$$

2) Evaluate the integral

$$
\int \frac{d x}{x\left[1+(\ln x)^{2}\right]}
$$

3) Find the area bounded by the curves

$$
f(x)=\cos \frac{x}{2} \quad \text { and } \quad g(x)=\sin \frac{x}{2}
$$

and the vertical lines $x=0$ and $x=2 \pi$.
4) Evaluate the integral

$$
\int_{0}^{2}\left|x^{2}-x\right| d x
$$

5) Find the volume of the solid obtained by rotating the area bounded by the graph of

$$
f(x)=\frac{1}{\sqrt{1-x^{4}}}
$$

the x-axis, and the vertical lines $x=0$ and $x=1$ about the y-axis
6) Evaluate the integral

$$
\int x^{4} \sin 2 x
$$

7) Evaluate the integral

$$
\int \frac{d x}{x^{2}-4}
$$

8) Find the volume of the solid obtained by rotating the area bounded by the graph of $f(x)=\sec ^{2} x \tan ^{2} x$, the x-axis, and the vertical lines $x=0$ and $x=\pi / 4$ about the x-axis.
9) Find the work done by moving an object from $x=0$ to $x=1$ if the force at a distance x from the origin is

$$
\frac{e^{\sqrt{x}}}{\sqrt{x}}
$$

10) Evaluate the integral (including any constants)

$$
\int \frac{2 x^{2}+x+1}{x^{3}+x} d x
$$

Integration Formulas

Constants of integration have been omitted.

$$
\begin{align*}
\int \sec ^{2} x d x & =\tan x \tag{1}\\
\int \csc ^{2} x d x & =-\cot x \tag{2}\\
\int \sec x \tan x d x & =\sec x \tag{3}\\
\int \csc x \cot x d x & =-\csc x \tag{4}
\end{align*}
$$

$$
\begin{equation*}
\int \sec x d x=\ln |\sec x+\tan x| \tag{5}
\end{equation*}
$$

$$
\int \csc x d x=\ln |\csc x-\cot x|
$$

$$
\int \tan x d x=\ln |\sec x|
$$

$$
\int \cot x d x=\ln |\sin x|
$$

$$
\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)
$$

$$
\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right)
$$

$$
\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|
$$

$$
\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|
$$

This page is intentionally left blank

This page is intentionally left blank

MA126 Exam 1 Version 2

Name:

1) Find the volume of the solid obtained by rotating the area bounded by the graph of

$$
f(x)=\frac{1}{\sqrt{1-x^{4}}}
$$

the x-axis, and the vertical lines $x=0$ and $x=1$ about the y-axis
2) Find the work done by moving an object from $x=0$ to $x=1$ if the force at a distance x from the origin is

$$
\frac{e^{\sqrt{x}}}{\sqrt{x}}
$$

3) Find the area bounded by the curves

$$
f(x)=\cos \frac{x}{2} \quad \text { and } \quad g(x)=\sin \frac{x}{2}
$$

and the vertical lines $x=0$ and $x=2 \pi$.
4) Evaluate the integral

$$
\int_{0}^{2}\left|x^{2}-x\right| d x
$$

5)

Find the form of the partial fractions expansion for the following integrand. DO NOT determine the values of the coefficients.

$$
\frac{x^{2}+2 x+1}{x(x+1)^{2}\left(x^{2}+2\right)^{2}}
$$

6) Evaluate the integral

$$
\int x^{4} \sin 2 x
$$

7) Evaluate the integral

$$
\int \frac{d x}{x^{2}-4}
$$

8) Find the volume of the solid obtained by rotating the area bounded by the graph of $f(x)=\sec ^{2} x \tan ^{2} x$, the x-axis, and the vertical lines $x=0$ and $x=\pi / 4$ about the x-axis.
9) Evaluate the integral

$$
\int \frac{d x}{x\left[1+(\ln x)^{2}\right]}
$$

10) Evaluate the integral (including any constants)

$$
\int \frac{2 x^{2}+x+1}{x^{3}+x} d x
$$

Integration Formulas

Constants of integration have been omitted.

$$
\begin{align*}
& \int \sec ^{2} x d x=\tan x \tag{13}\\
& \int \csc ^{2} x d x=-\cot x \tag{14}
\end{align*}
$$

$$
\begin{equation*}
\int \sec x \tan x d x=\sec x \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\int \csc x \cot x d x=-\csc x \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\int \sec x d x=\ln |\sec x+\tan x| \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\int \csc x d x=\ln |\csc x-\cot x| \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\int \tan x d x=\ln |\sec x| \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\int \cot x d x=\ln |\sin x| \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right) \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right) \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right| \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\ln \left|x+\sqrt{x^{2} \pm a^{2}}\right| \tag{24}
\end{equation*}
$$

This page is intentionally left blank

This page is intentionally left blank

