Sections 5.1

Gene Quinn

The Area Problem

Suppose we want to find the area under the graph of the function

$$
y=f(x)=x
$$

between the x-coordinates 0 and 1 .

The Area Problem

Drawing a picture, we recognize the area as a right triangle.

The Area Problem

We can use the formula

$$
A=\frac{1}{2} \cdot b \cdot h
$$

to find the area under the graph of f because it happens to form a triangle.

The Area Problem

We can use the formula

$$
A=\frac{1}{2} \cdot b \cdot h
$$

to find the area under the graph of f because it happens to form a triangle.

For a general function, this is not the case.
We would like to find a method of computing the area under the graph of a more general function.

The Area Problem

We can use the formula

$$
A=\frac{1}{2} \cdot b \cdot h
$$

to find the area under the graph of f because it happens to form a triangle.

For a general function, this is not the case.
We would like to find a method of computing the area under the graph of a more general function.

One strategy is to approximate the area using a shape we know how to find the area of.

The Area Problem

We can approximate the area under the graph by a rectangle with a corners at the origin and the point $(1,1)$:

The Area Problem

The area of the rectangle is 1 , which overstates the area of the triangle, which we know is

$$
A=\frac{1}{2} \cdot b \cdot h=\frac{1}{2}
$$

The Area Problem

The area of the rectangle is 1 , which overstates the area of the triangle, which we know is

$$
A=\frac{1}{2} \cdot b \cdot h=\frac{1}{2}
$$

The rectangle is not a very good approximation, but we can improve it by using more than one rectangle.

The Area Problem

The area of the rectangle is 1 , which overstates the area of the triangle, which we know is

$$
A=\frac{1}{2} \cdot b \cdot h=\frac{1}{2}
$$

The rectangle is not a very good approximation, but we can improve it by using more than one rectangle.

Suppose we divide the interval from 0 to 1 into two equal subintervals

$$
\left[0, \frac{1}{2}\right] \quad \text { and } \quad\left[\frac{1}{2}, 1\right]
$$

Now we can construct two rectangles, using the value of $f(x)$ at the right endpoint of each.

The Area Problem

Now the picture looks like this:

The Area Problem

The combined area of the two rectangles is

$$
R_{2}=\frac{1}{2} \cdot f(1 / 2)+\frac{1}{2} \cdot f(1)
$$

The Area Problem

The combined area of the two rectangles is

$$
R_{2}=\frac{1}{2} \cdot f(1 / 2)+\frac{1}{2} \cdot f(1)
$$

We can write this expression as

$$
\begin{aligned}
& R_{2}=\frac{1}{2} \cdot\left[\frac{1}{2}+\frac{2}{2}\right] \\
= & \frac{1}{2} \cdot \frac{1}{2} \cdot(1+2)=\frac{3}{4}
\end{aligned}
$$

The Area Problem

The combined area of the two rectangles is

$$
R_{2}=\frac{1}{2} \cdot f(1 / 2)+\frac{1}{2} \cdot f(1)
$$

We can write this expression as

$$
\begin{aligned}
& R_{2}=\frac{1}{2} \cdot\left[\frac{1}{2}+\frac{2}{2}\right] \\
= & \frac{1}{2} \cdot \frac{1}{2} \cdot(1+2)=\frac{3}{4}
\end{aligned}
$$

We improved the approximation by taking two rectangles, so now try four.

The Area Problem

Now the picture looks like this:

The Area Problem

The combined area of the four rectangles is

$$
R_{4}=\frac{1}{4} \cdot f\left(\frac{1}{4}\right)+\frac{1}{4} \cdot f\left(\frac{2}{4}\right)+\frac{1}{4} \cdot f\left(\frac{3}{4}\right)+\frac{1}{4} \cdot f\left(\frac{4}{4}\right)
$$

The Area Problem

The combined area of the four rectangles is

$$
R_{4}=\frac{1}{4} \cdot f\left(\frac{1}{4}\right)+\frac{1}{4} \cdot f\left(\frac{2}{4}\right)+\frac{1}{4} \cdot f\left(\frac{3}{4}\right)+\frac{1}{4} \cdot f\left(\frac{4}{4}\right)
$$

We can write this expression as

$$
R_{4}=\frac{1}{4} \cdot \frac{1}{4} \cdot(1+2+3+4)=\frac{10}{16}
$$

The Area Problem

The combined area of the four rectangles is

$$
R_{4}=\frac{1}{4} \cdot f\left(\frac{1}{4}\right)+\frac{1}{4} \cdot f\left(\frac{2}{4}\right)+\frac{1}{4} \cdot f\left(\frac{3}{4}\right)+\frac{1}{4} \cdot f\left(\frac{4}{4}\right)
$$

We can write this expression as

$$
R_{4}=\frac{1}{4} \cdot \frac{1}{4} \cdot(1+2+3+4)=\frac{10}{16}
$$

We can continue to, say, 16 rectangles.

The Area Problem

The new picture is:

The Area Problem

As before, when we write the expression for the total area of the 16 rectangles and collect terms, we get

$$
R_{16}=\frac{1}{16} \cdot \frac{1}{16} \cdot(1+2+\cdots+15+16)
$$

The Area Problem

As before, when we write the expression for the total area of the 16 rectangles and collect terms, we get

$$
R_{16}=\frac{1}{16} \cdot \frac{1}{16} \cdot(1+2+\cdots+15+16)
$$

We could simply add the numbers from 1 to 16 , but recall that the sum of the first n integers is always

$$
1+2+\cdots+n-1+n=\frac{n(n+1)}{2}
$$

The Area Problem

As before, when we write the expression for the total area of the 16 rectangles and collect terms, we get

$$
R_{16}=\frac{1}{16} \cdot \frac{1}{16} \cdot(1+2+\cdots+15+16)
$$

We could simply add the numbers from 1 to 16 , but recall that the sum of the first n integers is always

$$
1+2+\cdots+n-1+n=\frac{n(n+1)}{2}
$$

Using this formula with $n=16$,

$$
R_{16}=\frac{1}{16} \cdot \frac{1}{16} \cdot \frac{16 \cdot 17}{2}=\frac{136}{256}=.531
$$

The Area Problem

With 64 rectangles, the picture is:

The Area Problem

With 64 rectangles, the area is

$$
R_{64}=\frac{1}{64} \cdot \frac{1}{64} \cdot \frac{64 \cdot 65}{2}=\frac{2080}{4096}=.508
$$

The Area Problem

With 64 rectangles, the area is

$$
R_{64}=\frac{1}{64} \cdot \frac{1}{64} \cdot \frac{64 \cdot 65}{2}=\frac{2080}{4096}=.508
$$

In principle there is no limit to the number of rectangles we can have, and apparently the approximation improves as we take more.

The Area Problem

In the general case, say n rectangles, their combined area is

$$
\begin{aligned}
R_{n}= & \frac{1}{n} \\
& \cdot \frac{1}{n} \cdot \frac{n \cdot(n+1)}{2} \\
& =\frac{n+1}{2 n} \\
& =\frac{1}{2}+\frac{1}{2 n}
\end{aligned}
$$

The Area Problem

We could have chosen function value at the left endpoint of each interval, which for four rectangles produces the following picture:

The Area Problem

The combined area of the four rectangles using left endpoints is

$$
L_{4}=\frac{1}{4} \cdot f\left(\frac{0}{4}\right)+\frac{1}{4} \cdot f\left(\frac{1}{4}\right)+\frac{1}{4} \cdot f\left(\frac{2}{4}\right)+\frac{1}{4} \cdot f\left(\frac{3}{4}\right)
$$

The Area Problem

The combined area of the four rectangles using left endpoints is

$$
L_{4}=\frac{1}{4} \cdot f\left(\frac{0}{4}\right)+\frac{1}{4} \cdot f\left(\frac{1}{4}\right)+\frac{1}{4} \cdot f\left(\frac{2}{4}\right)+\frac{1}{4} \cdot f\left(\frac{3}{4}\right)
$$

We can write this expression as

$$
L_{4}=\frac{1}{4} \cdot \frac{1}{4} \cdot(0+1+2+3)=\frac{6}{16}
$$

The Area Problem

The combined area of the four rectangles using left endpoints is

$$
L_{4}=\frac{1}{4} \cdot f\left(\frac{0}{4}\right)+\frac{1}{4} \cdot f\left(\frac{1}{4}\right)+\frac{1}{4} \cdot f\left(\frac{2}{4}\right)+\frac{1}{4} \cdot f\left(\frac{3}{4}\right)
$$

We can write this expression as

$$
L_{4}=\frac{1}{4} \cdot \frac{1}{4} \cdot(0+1+2+3)=\frac{6}{16}
$$

For rectangles whose height is the function value at the left endpoint, the only change is in the summation.

Instead of summing the integers from 1 to n, we are summing the integers from 0 to $n-1$.

The Area Problem

Of course, the sum of the integers from 0 to $n-1$ is the same as the sum of the integers from 1 to $n-1$, which we know is

$$
\frac{(n-1) n}{2}
$$

The Area Problem

Of course, the sum of the integers from 0 to $n-1$ is the same as the sum of the integers from 1 to $n-1$, which we know is

$$
\frac{(n-1) n}{2}
$$

In the general case of n rectangles with the height equal to the function value at the left endpoint, the combined area is

$$
\begin{aligned}
L_{n}=\frac{1}{n} & \cdot \frac{1}{n} \cdot \frac{n \cdot(n-1)}{2} \\
& =\frac{n-1}{2 n} \\
& =\frac{1}{2}-\frac{1}{2 n}
\end{aligned}
$$

The Area Problem

If we call the area below the graph A, we can write the following inequality:

$$
L_{n}=\frac{1}{2}-\frac{1}{2 n} \leq A \leq \frac{1}{2}+\frac{1}{2 n}=R_{n}
$$

The Area Problem

If we call the area below the graph A, we can write the following inequality:

$$
L_{n}=\frac{1}{2}-\frac{1}{2 n} \leq A \leq \frac{1}{2}+\frac{1}{2 n}=R_{n}
$$

Now take limits as the number of rectangles increases without bound, that is, as $n \rightarrow \infty$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} L_{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{2}-\frac{1}{2 n}\right) \leq \lim _{n \rightarrow \infty} A \\
\leq \lim _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{1}{2 n}\right)=\lim _{n \rightarrow \infty} R_{n}
\end{gathered}
$$

The Area Problem

The center term is just a constant and by the squeeze theorem the area A must be $1 / 2$:

$$
\frac{1}{2} \leq A \leq \frac{1}{2}
$$

The Area Problem

Now we would like to write formulas for R_{n} and L_{n} :

- For a general function $f(x)$
- On an arbitrary interval $[a, b]$

The Area Problem

Now we would like to write formulas for R_{n} and L_{n} :

- For a general function $f(x)$
- On an arbitrary interval $[a, b]$

The width of each rectangle will be

$$
\Delta x=\frac{b-a}{n}
$$

The Area Problem

The right endpoint of the $i^{\text {th }}$ rectangle is

$$
x_{i}=a+i \cdot \Delta x
$$

The Area Problem

The right endpoint of the $i^{\text {th }}$ rectangle is

$$
x_{i}=a+i \cdot \Delta x
$$

So, with this definition of x_{i},

$$
R_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x
$$

The Area Problem

Similarly, the left endpoint of the $i^{\text {th }}$ rectangle is

$$
x_{i}=a+(i-1) \cdot \Delta x
$$

The Area Problem

Similarly, the left endpoint of the $i^{\text {th }}$ rectangle is

$$
x_{i}=a+(i-1) \cdot \Delta x
$$

So with x_{i} as defined above,

$$
L_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x
$$

Definition of Area

Now we state the definition of the area under the graph of a continuous function f :

Definition: The area A of the region S that lies under the graph of a continuous function f is the limit of the sum of the areas of approximating rectangles,

$$
A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Definition of Area

Now we state the definition of the area under the graph of a continuous function f :

Definition: The area A of the region S that lies under the graph of a continuous function f is the limit of the sum of the areas of approximating rectangles,

$$
A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

It can be shown that this limit always exists if f is continuous.

Definition of Area

Now we state the definition of the area under the graph of a continuous function f :

Definition: The area A of the region S that lies under the graph of a continuous function f is the limit of the sum of the areas of approximating rectangles,

$$
A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

It can be shown that this limit always exists if f is continuous.

It can also be shown that we get the same value if we use L_{n} instead of R_{n}.

Definition of Area

$$
A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

In fact, we get the same value if we choose x_{i} to be any value x_{i}^{*} in the $i^{\text {th }}$ interval.

