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The Area Problem
Suppose we want to find the area under the graph of the
function

y = f(x) = x

between the x-coordinates 0 and 1.
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The Area Problem
Drawing a picture, we recognize the area as a right triangle.
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The Area Problem
We can use the formula

A =
1

2
· b · h

to find the area under the graph of f because it happens to
form a triangle.
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The Area Problem
We can use the formula

A =
1

2
· b · h

to find the area under the graph of f because it happens to
form a triangle.

For a general function, this is not the case.

We would like to find a method of computing the area under
the graph of a more general function.
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The Area Problem
We can use the formula

A =
1

2
· b · h

to find the area under the graph of f because it happens to
form a triangle.

For a general function, this is not the case.

We would like to find a method of computing the area under
the graph of a more general function.

One strategy is to approximate the area using a shape we
know how to find the area of.

Sections 5.1 – p. 4/25



The Area Problem
We can approximate the area under the graph by a
rectangle with a corners at the origin and the point (1, 1):
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The Area Problem
The area of the rectangle is 1, which overstates the area of
the triangle, which we know is

A =
1

2
· b · h =

1

2
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The Area Problem
The area of the rectangle is 1, which overstates the area of
the triangle, which we know is

A =
1

2
· b · h =

1

2

The rectangle is not a very good approximation, but we can
improve it by using more than one rectangle.
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The Area Problem
The area of the rectangle is 1, which overstates the area of
the triangle, which we know is

A =
1

2
· b · h =

1

2

The rectangle is not a very good approximation, but we can
improve it by using more than one rectangle.

Suppose we divide the interval from 0 to 1 into two equal
subintervals

[

0,
1

2

]

and
[

1

2
, 1

]

Now we can construct two rectangles, using the value of
f(x) at the right endpoint of each.
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The Area Problem
Now the picture looks like this:
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The Area Problem
The combined area of the two rectangles is

R2 =
1

2
· f(1/2) +

1

2
· f(1)
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The Area Problem
The combined area of the two rectangles is

R2 =
1

2
· f(1/2) +

1

2
· f(1)

We can write this expression as

R2 =
1

2
·

[

1

2
+

2

2

]

=
1

2
·
1

2
· (1 + 2) =

3

4
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The Area Problem
The combined area of the two rectangles is

R2 =
1

2
· f(1/2) +

1

2
· f(1)

We can write this expression as

R2 =
1

2
·

[

1

2
+

2

2

]

=
1

2
·
1

2
· (1 + 2) =

3

4

We improved the approximation by taking two rectangles,
so now try four.
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The Area Problem
Now the picture looks like this:
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The Area Problem
The combined area of the four rectangles is

R4 =
1

4
· f

(

1

4

)

+
1

4
· f

(

2

4

)

+
1

4
· f

(

3

4

)

+
1

4
· f

(

4

4

)
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The Area Problem
The combined area of the four rectangles is

R4 =
1

4
· f

(

1

4

)

+
1

4
· f

(

2

4

)

+
1

4
· f

(

3

4

)

+
1

4
· f

(

4

4

)

We can write this expression as

R4 =
1

4
·
1

4
· (1 + 2 + 3 + 4) =

10

16
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The Area Problem
The combined area of the four rectangles is

R4 =
1

4
· f

(

1

4

)

+
1

4
· f

(

2

4

)

+
1

4
· f

(

3

4

)

+
1

4
· f

(

4

4

)

We can write this expression as

R4 =
1

4
·
1

4
· (1 + 2 + 3 + 4) =

10

16

We can continue to, say, 16 rectangles.
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The Area Problem
The new picture is:
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The Area Problem
As before, when we write the expression for the total area
of the 16 rectangles and collect terms, we get

R16 =
1

16
·

1

16
· (1 + 2 + · · · + 15 + 16)
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The Area Problem
As before, when we write the expression for the total area
of the 16 rectangles and collect terms, we get

R16 =
1

16
·

1

16
· (1 + 2 + · · · + 15 + 16)

We could simply add the numbers from 1 to 16, but recall
that the sum of the first n integers is always

1 + 2 + · · · + n − 1 + n =
n(n + 1)

2
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The Area Problem
As before, when we write the expression for the total area
of the 16 rectangles and collect terms, we get

R16 =
1

16
·

1

16
· (1 + 2 + · · · + 15 + 16)

We could simply add the numbers from 1 to 16, but recall
that the sum of the first n integers is always

1 + 2 + · · · + n − 1 + n =
n(n + 1)

2

Using this formula with n = 16,

R16 =
1

16
·

1

16
·
16 · 17

2
=

136

256
= .531
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The Area Problem
With 64 rectangles, the picture is:
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The Area Problem
With 64 rectangles, the area is

R64 =
1

64
·

1

64
·
64 · 65

2
=

2080

4096
= .508
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The Area Problem
With 64 rectangles, the area is

R64 =
1

64
·

1

64
·
64 · 65

2
=

2080

4096
= .508

In principle there is no limit to the number of rectangles we
can have, and apparently the approximation improves as
we take more.
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The Area Problem
In the general case, say n rectangles, their combined area
is

Rn =
1

n
·
1

n
·
n · (n + 1)

2

=
n + 1

2n

=
1

2
+

1

2n
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The Area Problem
We could have chosen function value at the left endpoint of
each interval, which for four rectangles produces the
following picture:
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The Area Problem
The combined area of the four rectangles using left
endpoints is

L4 =
1

4
· f

(

0

4

)

+
1

4
· f

(
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4

)

+
1

4
· f

(
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4

)

+
1

4
· f

(

3

4

)
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The Area Problem
The combined area of the four rectangles using left
endpoints is

L4 =
1

4
· f

(

0

4

)

+
1

4
· f

(

1

4

)

+
1

4
· f

(

2

4

)

+
1

4
· f

(

3

4

)

We can write this expression as

L4 =
1

4
·
1

4
· (0 + 1 + 2 + 3) =

6

16
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The Area Problem
The combined area of the four rectangles using left
endpoints is

L4 =
1

4
· f

(

0

4

)

+
1

4
· f

(

1

4

)

+
1

4
· f

(

2

4

)

+
1

4
· f

(

3

4

)

We can write this expression as

L4 =
1

4
·
1

4
· (0 + 1 + 2 + 3) =

6

16

For rectangles whose height is the function value at the left
endpoint, the only change is in the summation.

Instead of summing the integers from 1 to n, we are
summing the integers from 0 to n − 1.
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The Area Problem
Of course, the sum of the integers from 0 to n − 1

is the same as the sum of the integers from 1 to n − 1,
which we know is

(n − 1)n

2
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The Area Problem
Of course, the sum of the integers from 0 to n − 1

is the same as the sum of the integers from 1 to n − 1,
which we know is

(n − 1)n

2

In the general case of n rectangles with the height equal to
the function value at the left endpoint, the combined area is

Ln =
1

n
·
1

n
·
n · (n − 1)

2

=
n − 1

2n

=
1

2
−

1

2n
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The Area Problem
If we call the area below the graph A, we can write the
following inequality:

Ln =
1

2
−

1

2n
≤ A ≤

1

2
+

1

2n
= Rn
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The Area Problem
If we call the area below the graph A, we can write the
following inequality:

Ln =
1

2
−

1

2n
≤ A ≤

1

2
+

1

2n
= Rn

Now take limits as the number of rectangles increases
without bound, that is, as n → ∞

lim
n→∞

Ln = lim
n→∞

(

1

2
−

1

2n

)

≤ lim
n→∞

A

≤ lim
n→∞

(

1

2
+

1

2n

)

= lim
n→∞

Rn
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The Area Problem
The center term is just a constant and by the squeeze
theorem the area A must be 1/2:

1

2
≤ A ≤

1

2
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The Area Problem
Now we would like to write formulas for Rn and Ln:

For a general function f(x)

On an arbitrary interval [a, b]
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The Area Problem
Now we would like to write formulas for Rn and Ln:

For a general function f(x)

On an arbitrary interval [a, b]

The width of each rectangle will be

∆x =
b − a

n
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The Area Problem
The right endpoint of the ith rectangle is

xi = a + i · ∆x
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The Area Problem
The right endpoint of the ith rectangle is

xi = a + i · ∆x

So, with this definition of xi,

Rn =
n

∑

i=1

f(xi) · ∆x

Sections 5.1 – p. 22/25



The Area Problem
Similarly, the left endpoint of the ith rectangle is

xi = a + (i − 1) · ∆x
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The Area Problem
Similarly, the left endpoint of the ith rectangle is

xi = a + (i − 1) · ∆x

So with xi as defined above,

Ln =
n

∑

i=1

f(xi) · ∆x
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Definition of Area
Now we state the definition of the area under the graph of a
continuous function f :

Definition: The area A of the region S that lies under the
graph of a continuous function f is the limit of the sum of
the areas of approximating rectangles,

A = lim
n→∞

Rn = lim
n→∞

n
∑

i=1

f(xi)∆x

Sections 5.1 – p. 24/25



Definition of Area
Now we state the definition of the area under the graph of a
continuous function f :

Definition: The area A of the region S that lies under the
graph of a continuous function f is the limit of the sum of
the areas of approximating rectangles,

A = lim
n→∞

Rn = lim
n→∞

n
∑

i=1

f(xi)∆x

It can be shown that this limit always exists if f is
continuous.
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Definition of Area
Now we state the definition of the area under the graph of a
continuous function f :

Definition: The area A of the region S that lies under the
graph of a continuous function f is the limit of the sum of
the areas of approximating rectangles,

A = lim
n→∞

Rn = lim
n→∞

n
∑

i=1

f(xi)∆x

It can be shown that this limit always exists if f is
continuous.

It can also be shown that we get the same value if we use
Ln instead of Rn.
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Definition of Area

A = lim
n→∞

Rn = lim
n→∞

n
∑

i=1

f(xi)∆x

In fact, we get the same value if we choose xi to be any
value x∗

i
in the ith interval.
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