MTH125 Stewart Section 1.6

Gene Quinn

One-to-One Functions

A function is said to be one-to-one if it never takes the same value twice; That is, for every x_{1}, x_{2} in the domain of f,

$$
f\left(x_{1}\right) \neq f\left(x_{2}\right) \quad \text { whenever } \quad x_{1} \neq x_{2}
$$

One-to-One Functions

A function is said to be one-to-one if it never takes the same value twice; That is, for every x_{1}, x_{2} in the domain of f,

$$
f\left(x_{1}\right) \neq f\left(x_{2}\right) \quad \text { whenever } \quad x_{1} \neq x_{2}
$$

Equivalently, a function is one-to-one if it passes the horizontal line test:
Horizontal Line Test: A function is one-to-one if and only if no horizontal line intersects its graph more than once.

One-to-One Functions

A function is said to be one-to-one if it never takes the same value twice; That is, for every x_{1}, x_{2} in the domain of f,

$$
f\left(x_{1}\right) \neq f\left(x_{2}\right) \quad \text { whenever } \quad x_{1} \neq x_{2}
$$

Equivalently, a function is one-to-one if it passes the horizontal line test:

Horizontal Line Test: A function is one-to-one if and only if no horizontal line intersects its graph more than once.

The function

$$
f(x)=x^{2}
$$

is not one-to-one because

$$
f(-2)=f(2) \quad \text { but } \quad-2 \neq 2
$$

Inverse of a one-to-one Function

Suppose f is a one-to-one function with domain A and range B. The its inverse function f^{-1} has domain B and range A and is defined by:

$$
f^{-1}(y)=x \Leftrightarrow f(x)=y
$$

for any $y \in B$.

Inverse of a one-to-one Function

Suppose f is a one-to-one function with domain A and range B. The its inverse function f^{-1} has domain B and range A and is defined by:

$$
f^{-1}(y)=x \Leftrightarrow f(x)=y
$$

for any $y \in B$.
Note that the domain of f^{-1} is the range of f, and the range of f is the domain of f^{-1}.

Inverse of a one-to-one Function

Suppose f is a one-to-one function with domain A and range B. The its inverse function f^{-1} has domain B and range A and is defined by:

$$
f^{-1}(y)=x \Leftrightarrow f(x)=y
$$

for any $y \in B$.
Note that the domain of f^{-1} is the range of f, and the range of f is the domain of f^{-1}.

Composing f with f^{-1} we have the so-called cancellation equations

$$
\begin{aligned}
& \left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=x \text { for every } x \in A \\
& \left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=x \text { for every } x \in B
\end{aligned}
$$

Finding the Inverse of a 1:1 Function

There is a standard 3 -step procedure for finding the inverse of a $1: 1$ function:

1) Write $y=f(x)$

Finding the Inverse of a 1:1 Function

There is a standard 3-step procedure for finding the inverse of a 1:1 function:

1) Write $y=f(x)$
2) Solve this equation for x in terms of y, if possible

Finding the Inverse of a 1:1 Function

There is a standard 3 -step procedure for finding the inverse of a 1:1 function:

1) Write $y=f(x)$
2) Solve this equation for x in terms of y, if possible
3) Interchange y and x, that is, replace all x 's with y 's and all y 's with x 's.

Finding the Inverse of a 1:1 Function

Example: Find the inverse of $y=f(x)=3 x+4$.
Step 1: write the equation

$$
y=3 x+4
$$

Finding the Inverse of a 1:1 Function

Example: Find the inverse of $y=f(x)=3 x+4$.
Step 1: write the equation

$$
y=3 x+4
$$

Step 2: solve the equation for y in terms of x.

$$
\begin{array}{ll}
y & =3 x+4 \\
y-4 & =3 x \\
(y-4) / 3 & =x
\end{array}
$$

Finding the Inverse of a 1:1 Function

Step 3: interchange x and y :

$$
\frac{y-4}{3}=x
$$

becomes

$$
\frac{x-4}{3}=y=f^{-1}(x)
$$

Finding the Inverse of a 1:1 Function

Step 3: interchange x and y :

$$
\frac{y-4}{3}=x
$$

becomes

$$
\frac{x-4}{3}=y=f^{-1}(x)
$$

Check:

$$
\begin{gathered}
\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=\frac{(3 x-4)+4}{3}=\frac{3 x}{3}=x \\
\left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=3\left(\frac{x-4}{3}\right)+4=x-4+4=x
\end{gathered}
$$

Logarithmic Functions

Note that the exponential function with base a

$$
y=f(x)=a^{x}, \quad a \neq 1
$$

passes the horizontal line test, so it's 1:1 and therefore has an inverse function f^{-1}.

We define the logarithmic function $\log _{a} x$ by

$$
\log _{a} x=y \Leftrightarrow a^{y}=x
$$

Logarithmic Functions

Note that the exponential function with base a

$$
y=f(x)=a^{x}, \quad a \neq 1
$$

passes the horizontal line test, so it's 1:1 and therefore has an inverse function f^{-1}.
We define the logarithmic function $\log _{a} x$ by

$$
\log _{a} x=y \Leftrightarrow a^{y}=x
$$

Using the cancellation equations, we have

$$
\log _{a}\left(a^{x}\right)=x \quad \forall x \in R
$$

and

$$
a^{\log _{a} x}=x \quad \forall x>0
$$

Logarithmic Functions

If x and y are positive numbers, then

$$
\begin{gathered}
\log _{a}(x y)=\log _{a} x+\log _{a} y \\
\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y \\
\log _{a}\left(x^{r}\right)=r \log _{a} x
\end{gathered}
$$

Natural Logarithms

The logarithm with base e is called the natural logarithm and has the following special notation:

$$
\log _{e} x=\ln x
$$

Natural Logarithms

The logarithm with base e is called the natural logarithm and has the following special notation:

$$
\log _{e} x=\ln x
$$

We define the natural logarithm $\ln x$ by

$$
\ln x=y \Leftrightarrow e^{y}=x
$$

Using the cancellation equations, we have

$$
\ln \left(e^{x}\right)=x \quad \forall x \in R
$$

and

$$
e^{\ln x}=x \quad \forall x>0
$$

Sample Problem with Logarithms

Write the expression

$$
\log _{a} x+\frac{1}{2} \log _{a} y
$$

as a single logarithm.

Sample Problem with Logarithms

Write the expression

$$
\log _{a} x+\frac{1}{2} \log _{a} y
$$

as a single logarithm.
First use the third property of logarithms, $\log _{a}\left(x^{r}\right)=r \log _{a}(x)$ to rewrite the second term as a logarithm:

$$
\log _{a} x+\log _{a} \sqrt{y}
$$

Sample Problem with Logarithms

Write the expression

$$
\log _{a} x+\frac{1}{2} \log _{a} y
$$

as a single logarithm.
First use the third property of logarithms, $\log _{a}\left(x^{r}\right)=r \log _{a}(x)$ to rewrite the second term as a logarithm:

$$
\log _{a} x+\log _{a} \sqrt{y}
$$

Now apply the first property:

$$
\log _{a} x+\log _{a} \sqrt{y}=\log _{a}(x \sqrt{y})
$$

