Question 1

Convert the following equation containing exponentials to one containing logarithms:

$$
2^{x}=15
$$

1. $x=\log _{2} 15$
2. $x=\log 15$
3. $2 \log x=15$
4. $x=\ln 15$
5. $x^{2}=\log _{2} 15$
6. None of the above

Question 1

Convert the following equation containing exponentials to one containing logarithms:

$$
2^{x}=15
$$

1. $x=\log _{2} 15$
2. $2 \log x=15$
3. $x=\ln 15$
4. $x=\log 15$
5. $x^{2}=\log _{2} 15$
6. None of the above
7. $x=\log _{2}(15)$

Question 1

To convert the expression

$$
2^{x}=15
$$

to one containing logarithms, use the fact that

$$
\log _{2}\left(2^{x}\right)=x
$$

together with the fact that logarithmic functions are $1: 1$ so we can take $\log _{2}$ of both sides of the equation without changing the solution set:

$$
\log _{2}\left(2^{x}\right)=\log _{2}(15)
$$

which simplifies to

Question 2

Convert the following equation containing exponentials to one containing logarithms:

$$
4 e^{x}=x+1
$$

1. $x=4 \ln (x+1)$
2. $x=\ln (x+1)-\ln 4$
3. $x=\ln (x+1)$
4. $\quad x=\ln (x+1)-4$
5. $x^{4}=\ln (x+1)$
6. None of the above

Question 2

Convert the following equation containing exponentials to one containing logarithms:

$$
4 e^{x}=x+1
$$

$$
\begin{array}{ll}
\text { 1. } & x=4 \ln (x+1) \\
\text { 2. } & x=\ln (x+1)-\ln 4 \\
\text { 3. } & x=\ln (x+1)
\end{array}
$$

$$
\text { 4. } \quad x=\ln (x+1)-4
$$

$$
\text { 5. } \quad x^{4}=\ln (x+1)
$$

6. None of the above
7. $x=\ln (x+1)-\ln (4)$

Question 2

To convert the equation:

$$
4 e^{x}=x+1
$$

to one containing logarithms, use the fact that

$$
\ln \left(e^{x}\right)=x
$$

together with the fact that logarithmic functions are $1: 1$ so we can take \ln of both sides of the equation without changing the solution set:

$$
\ln \left(4 e^{x}\right)=\ln 4+\ln e^{x}=\ln 4+x=\ln (x+1)
$$

which simplifies to

$$
x=\ln (x+1)-\ln (4)
$$

Question 3

Express the following as a single logarithm

$$
\ln 5+5 \ln 3
$$

1. $5 \ln 8$
2. $\ln \left(5+3^{5}\right)$
3. $\ln 5 \cdot 3^{5}$
4. $\ln 20$
5. $\ln \left(5 \cdot 5^{3}\right.$
6. None of the above

Question 3

Express the following as a single logarithm

$$
\ln 5+5 \ln 3
$$

1. $5 \ln 8$
2. $\ln \left(5+3^{5}\right)$
3. $\ln 5 \cdot 3^{5}$
4. $\ln 20$
5. $\ln \left(5 \cdot 5^{3}\right.$
6. None of the above
7. $\ln 5 \cdot 3^{5}$

Question 3

Use the fact that $r \ln x=\ln x^{r}$ to write

$$
5 \ln 3=\ln 3^{5}
$$

then use the fact that $\ln x+\ln y=\ln (x y)$ to combine the logarithmic expressions:

$$
\ln 5+\ln 3^{5}=\ln \left(5 \cdot 3^{5}\right)
$$

Question 4

Find the inverse of

$$
f(x)=\sqrt{10-3 x}
$$

1. $-\frac{1}{3} x^{2}+\frac{10}{3}$
2. $3 x^{2}+\frac{10}{3}$
3. $-\frac{1}{3} x^{2}+\frac{3}{10}$
4. $-3 x^{2}+\frac{10}{3}$
5. $-\frac{1}{3} x^{2}-\frac{10}{3}$
6. None of the above

Question 4

Find the inverse of

$$
f(x)=\sqrt{10-3 x}
$$

1. $-\frac{1}{3} x^{2}+\frac{10}{3}$
2. $3 x^{2}+\frac{10}{3}$
3. $-\frac{1}{3} x^{2}+\frac{3}{10}$
4. $-\frac{1}{3} x^{2}+\frac{10}{3}$
5. $-3 x^{2}+\frac{10}{3}$
6. $-\frac{1}{3} x^{2}-\frac{10}{3}$
7. None of the above

Question 4

Starting with $y=\sqrt{10-3 x}$, solve for x :

$$
y=\sqrt{10-3 x} \Rightarrow y^{2}=10-3 x \Rightarrow x=-\frac{y^{2}}{3}+\frac{10}{3}
$$

then interchange x and y :

$$
y=-\frac{x^{2}}{3}+\frac{10}{3}
$$

Question 5

Find C and a if this is the graph of $y=C a^{x}$

1. $C=1 \quad a=2$
2. $C=4 \quad a=2$
3. $C=2 \quad a=4$
4. $C=2 \quad a=2$
5. $C=4 \quad a=1 / 2$
6. None of the above

Question 5

Find C and a if this is the graph of $y=C a^{x}$

1. $C=1 \quad a=2$
2. $C=4 \quad a=2$
3. $C=2 \quad a=4$
4. $C=2 \quad a=2$
5. $C=4 \quad a=1 / 2$
6. None of the above
7. $C=4 \quad a=2$

Question 5

When $x=0, y=4$, so

$$
y=4=C a^{0}=C \cdot 1=C
$$

so $C=4$. From the graph, $y=8$ when $x=1$, so

$$
y=8=4 a^{1}=4 a
$$

so $a=2$.

Question 6

Write the expression 3^{x} as a natural (base e) exponential.

1. $e^{3 x}$
2. $3^{x / 3}$
3. $\log _{3} e^{x}$
4. $x \cdot e^{3}$
5. $e^{x \cdot \ln 3}$
6. None of the above

Question 6

Write the expression 3^{x} as a natural (base e) exponential.

1. $e^{3 x}$
2. $3^{x / 3}$
3. $\log _{3} e^{x}$
4. $x \cdot e^{3}$
5. $e^{x \cdot \ln 3}$
6. None of the above
7. $e^{x \cdot \ln 3}$

Question 6

Use the fact that

$$
3=e^{\ln 3}
$$

to write the expression as

$$
3^{x}=\left(e^{\ln 3}\right)^{x}=e^{x \cdot \ln 3}
$$

