Convert the following equation containing exponentials to one containing logarithms:

$$2^x = 15$$

- **1.** $x = \log_2 15$
- **2.** $2 \log x = 15$
- **3.** $x = \ln 15$

4. $x = \log 15$

5.
$$x^2 = \log_2 15$$

6. None of the above

Convert the following equation containing exponentials to one containing logarithms:

$$2^x = 15$$

- 1. $x = \log_2 15$
- **2.** $2 \log x = 15$
- **3.** $x = \ln 15$

4. $x = \log 15$

5.
$$x^2 = \log_2 15$$

6. None of the above

1. $x = \log_2(15)$

To convert the expression

$$2^x = 15$$

to one containing logarithms, use the fact that

 $\log_2(2^x) = x$

together with the fact that logarithmic functions are 1:1 so we can take \log_2 of both sides of the equation without changing the solution set:

$$\log_2(2^x) = \log_2(15)$$

 $\log_{2}(15)$

which simplifies to

Convert the following equation containing exponentials to one containing logarithms:

$$4e^x = x + 1$$

1.
$$x = 4 \ln(x+1)$$

2. $x = \ln(x+1) - \ln 4$

2.
$$x = \ln(x+1) - \ln(x+1)$$

3. $x = \ln(x+1)$

- 4. $x = \ln(x+1) 4$
- 5. $x^4 = \ln(x+1)$
- 6. None of the above

Convert the following equation containing exponentials to one containing logarithms:

$$4e^x = x + 1$$

1.
$$x = 4 \ln(x+1)$$

2. $x = \ln(x+1) - \ln 4$
3. $x = \ln(x+1)$

- 4. $x = \ln(x+1) 4$
- 5. $x^4 = \ln(x+1)$
- 6. None of the above

2. $x = \ln(x+1) - \ln(4)$

To convert the equation:

$$4e^x = x + 1$$

to one containing logarithms, use the fact that

 $\ln(e^x) = x$

together with the fact that logarithmic functions are 1:1 so we can take \ln of both sides of the equation without changing the solution set:

$$\ln(4e^x) = \ln 4 + \ln e^x = \ln 4 + x = \ln(x+1)$$

which simplifies to

$$x = \ln(x+1) - \ln(4)$$

Express the following as a single logarithm

 $\ln 5 + 5\ln 3$

- **1.** $5\ln 8$
- **2.** $\ln(5+3^5)$
- **3.** $\ln 5 \cdot 3^5$

- **4.** ln 20
 - **5.** $\ln(5 \cdot 5^3)$
- 6. None of the above

Express the following as a single logarithm

 $\ln 5 + 5\ln 3$

- **1.** $5\ln 8$
- **2.** $\ln(5+3^5)$
- **3.** $\ln 5 \cdot 3^5$

- **4.** ln 20
 - **5.** $\ln(5 \cdot 5^3)$
 - 6. None of the above

3. $\ln 5 \cdot 3^5$

Use the fact that $r \ln x = \ln x^r$ to write

$$5\ln 3 = \ln 3^5$$

then use the fact that $\ln x + \ln y = \ln(xy)$ to combine the logarithmic expressions:

$$\ln 5 + \ln 3^5 = \ln(5 \cdot 3^5)$$

Find the inverse of

$$f(x) = \sqrt{10 - 3x}$$

1. $-\frac{1}{3}x^2 + \frac{10}{3}$ 2. $3x^2 + \frac{10}{3}$ 3. $-\frac{1}{3}x^2 + \frac{3}{10}$ 4. $-3x^2 + \frac{10}{3}$ 5. $-\frac{1}{3}x^2 - \frac{10}{3}$ 6. None of the above

Find the inverse of

$$f(x) = \sqrt{10 - 3x}$$

1. $-\frac{1}{3}x^2 + \frac{10}{3}$ 2. $3x^2 + \frac{10}{3}$ 3. $-\frac{1}{3}x^2 + \frac{3}{10}$ 4. $-3x^2 + \frac{10}{3}$ 5. $-\frac{1}{3}x^2 - \frac{10}{3}$ 6. None of the above

1.
$$-\frac{1}{3}x^2 + \frac{10}{3}$$

Starting with $y = \sqrt{10 - 3x}$, solve for x:

$$y = \sqrt{10 - 3x} \Rightarrow y^2 = 10 - 3x \Rightarrow x = -\frac{y^2}{3} + \frac{10}{3}$$

then interchange x and y:

$$y = -\frac{x^2}{3} + \frac{10}{3}$$

Find C and a if this is the graph of $y = Ca^x$

1. C = 1 a = 2 **2.** C = 2 a = 4**3.** C = 4 a = 1/2

- **4.** C = 4 a = 2
- **5.** C = 2 a = 2
- 6. None of the above

Find C and a if this is the graph of $y = Ca^x$

1. C = 1 a = 22. C = 2 a = 43. C = 4 a = 1/24. C = 4 a = 2

- **4.** C = 4 a = 2
- **5.** C = 2 a = 2
- 6. None of the above

When x = 0, y = 4, so

$$y = 4 = Ca^0 = C \cdot 1 = C$$

so C = 4. From the graph, y = 8 when x = 1, so

$$y = 8 = 4a^1 = 4a$$

SO a = 2.

Write the expression 3^x as a natural (base e) exponential.

- 1. e^{3x} 2. $3^{x/3}$ 3. $\log_3 e^x$

- **4.** $x \cdot e^3$ **5.** $e^{x \cdot \ln 3}$
- 6. None of the above

Write the expression 3^x as a natural (base e) exponential.

- 1. e^{3x} 2. $3^{x/3}$ 3. $\log_3 e^x$

- 4. $x \cdot e^3$
- **5.** $e^{x \cdot \ln 3}$
- 6. None of the above

5. $e^{x \cdot \ln 3}$

Use the fact that

$$3 = e^{\ln 3}$$

to write the expression as

$$3^x = \left(e^{\ln 3}\right)^x = e^{x \cdot \ln 3}$$