Question 1

$$
f(x)=x^{2}
$$

Which of the following functions has the same graph as f, but shifted down two units?
A.
$g(x)=(x-2)^{2}$
D. $\quad g(x)=x^{2}-2$
E. $\quad g(x)=(x-2)^{2}+2$
C. $g(x)=x^{2}+2$
F. $\quad g(x)=(x-2)^{2}-2$

Question 1

$$
f(x)=x^{2}
$$

Which of the following functions has the same graph as f, but shifted down two units?
A.
$g(x)=(x-2)^{2}$
D. $\quad g(x)=x^{2}-2$
B. $g(x)=(x+2)^{2}$
E. $\quad g(x)=(x-2)^{2}+2$
C. $g(x)=x^{2}+2$
F. $\quad g(x)=(x-2)^{2}-2$
D. $g(x)=x^{2}-2$

Question 1

The graph of

$$
y=f(x)-2
$$

matches the graph of $f(x)$ but is shifted down two units.

Question 2

$$
f(x)=x^{2}
$$

Which of the following functions has the same graph as f, but shifted two units to the left?
A.
$g(x)=(x-2)^{2}$
D. $g(x)=x^{2}-2$
B. $g(x)=(x+2)^{2}$
E.
$g(x)=(x-2)^{2}+2$
C. $g(x)=x^{2}+2$
F. $\quad g(x)=(x-2)^{2}-2$

Question 2

$$
f(x)=x^{2}
$$

Which of the following functions has the same graph as f, but shifted two units to the left?
A.
$g(x)=(x-2)^{2}$
D. $g(x)=x^{2}-2$
B. $g(x)=(x+2)^{2}$
E.
$g(x)=(x-2)^{2}+2$
C. $g(x)=x^{2}+2$
F. $\quad g(x)=(x-2)^{2}-2$
B. $g(x)=(x+2)^{2}$

Question 2

The graph of

$$
y=f(x+2)
$$

matches the graph of $f(x)$ but is shifted two units to the left.

Question 3

$$
f(x)=x^{2}
$$

Which of the following functions has the graph of f, but shifted two units to the right and two down?
A.
$g(x)=(x-2)^{2}$
D. $g(x)=x^{2}-2$
B. $g(x)=(x+2)^{2}$
E. $\quad g(x)=(x-2)^{2}+2$
C. $g(x)=x^{2}+2$
F. $\quad g(x)=(x-2)^{2}-2$

Question 3

$$
f(x)=x^{2}
$$

Which of the following functions has the graph of f, but shifted two units to the right and two down?
A. $\quad g(x)=(x-2)^{2}$
B. $g(x)=(x+2)^{2}$
D. $\quad g(x)=x^{2}-2$
E. $\quad g(x)=(x-2)^{2}+2$
F. $\quad g(x)=(x-2)^{2}-2$
F. $g(x)=(x-2)^{2}-2$

Question 3

The graph of

$$
y=f(x-2)
$$

matches the graph of $f(x)$ but is shifted two units to the right.

Question 3

The graph of

$$
y=f(x-2)
$$

matches the graph of $f(x)$ but is shifted two units to the right.

The graph of

$$
y=f(x-2)-2
$$

matches the graph of $f(x)$ but is shifted two units to the right and two down.

Question 4

$$
f(x)=x^{2}
$$

Which of the following functions has the graph of f, but shifted two units up?
A. $g(x)=(x-2)^{2}$
D. $\quad g(x)=x^{2}-2$
B. $g(x)=(x+2)^{2}$
E. $\quad g(x)=(x-2)^{2}+2$
C. $g(x)=x^{2}+2$
F. $\quad g(x)=(x-2)^{2}-2$

Question 4

$$
f(x)=x^{2}
$$

Which of the following functions has the graph of f, but shifted two units up?
A. $g(x)=(x-2)^{2}$
D. $g(x)=x^{2}-2$
B. $g(x)=(x+2)^{2}$
E. $\quad g(x)=(x-2)^{2}+2$
C. $g(x)=x^{2}+2$
F. $\quad g(x)=(x-2)^{2}-2$
C. $g(x)=x^{2}+2$

Question 4

The graph of

$$
y=f(x)+2
$$

matches the graph of $f(x)$ but is shifted two units up.

Question 5

$$
f(x)=x^{2}
$$

Which of the following functions has the graph of f, but shifted two units to the right?
A.
$g(x)=(x-2)^{2}$
D. $\quad g(x)=x^{2}-2$
B. $g(x)=(x+2)^{2}$
E. $\quad g(x)=(x-2)^{2}+2$
C. $g(x)=x^{2}+2$
F. $\quad g(x)=(x-2)^{2}-2$

Question 5

$$
f(x)=x^{2}
$$

Which of the following functions has the graph of f, but shifted two units to the right?
A. $g(x)=(x-2)^{2}$
B. $g(x)=(x+2)^{2}$
C. $g(x)=x^{2}+2$
D. $\quad g(x)=x^{2}-2$
E. $\quad g(x)=(x-2)^{2}+2$
F. $\quad g(x)=(x-2)^{2}-2$
A. $g(x)=(x-2)^{2}$

Question 5

The graph of

$$
y=f(x-2)
$$

matches the graph of $f(x)$ but is shifted two units to the right.

Question 6

$$
f(x)=x^{2}+3 x-2
$$

Which of the following functions has the graph of f reflected across the x-axis?
A. $\quad g(x)=-x^{2}-3 x+2$
D.
$g(x)=x^{2}+3 x-4$
B. $\quad g(x)=x^{2}-3 x-2$
E.
$g(x)=-x^{2}-3 x$
C. $\quad g(x)=(x-1)^{2}+3(x-1)-2$
F.
$g(x)=x^{2}-3 x+2$

Question 6

$$
f(x)=x^{2}+3 x-2
$$

Which of the following functions has the graph of f reflected across the x-axis?
A. $\quad g(x)=-x^{2}-3 x+2$
B. $g(x)=x^{2}-3 x-2$
D.
E. $\quad g(x)=-x^{2}-3 x$
C. $\quad g(x)=(x-1)^{2}+3(x-1)-2$
F.
$g(x)=x^{2}-3 x+2$
A. $g(x)=-x^{2}-3 x+2$

Question 6

The graph of

$$
y=-f(x)
$$

matches the graph of $f(x)$ but is reflected across the x-axis.

Question 7

$$
f(x)=x^{2}+3 x-2
$$

Which of the following functions has the graph of f reflected across the y-axis?
A. $g(x)=-x^{2}-3 x+2$
B. $g(x)=x^{2}-3 x-2$
C. $g(x)=(x-1)^{2}+3(x-1)-2 \quad$ F.
D.
E.
F. $g(x)=x^{2}+3 x-4$
E. $\quad g(x)=-x^{2}-3 x$
$g(x)=x^{2}-3 x+2$

Question 7

$$
f(x)=x^{2}+3 x-2
$$

Which of the following functions has the graph of f reflected across the y-axis?
A. $g(x)=-x^{2}-3 x+2$
B. $g(x)=x^{2}-3 x-2$
D. $g(x)=x^{2}+3 x-4$
C. $\quad g(x)=(x-1)^{2}+3(x-1)-2 \quad$ F.
E. $\quad g(x)=-x^{2}-3 x$
$g(x)=x^{2}-3 x+2$
B. $g(x)=x^{2}-3 x-2$

Question 7

The graph of

$$
y=f(-x)
$$

matches the graph of $f(x)$ but is reflected across the y-axis.

Question 8

$$
f(x)=x^{2}+3 x-2
$$

Which of the following functions has the graph of f reflected across the x-axis and shifted down 2 units?
A. $\quad g(x)=-x^{2}-3 x+2$
D.
$g(x)=x^{2}+3 x-4$
B. $\quad g(x)=x^{2}-3 x-2$
E.
$g(x)=-x^{2}-3 x$
C. $\quad g(x)=(x-1)^{2}+3(x-1)-2$
F.
$g(x)=x^{2}-3 x+2$

Question 8

$$
f(x)=x^{2}+3 x-2
$$

Which of the following functions has the graph of f reflected across the x-axis and shifted down 2 units?
A. $g(x)=-x^{2}-3 x+2$
D.
$g(x)=x^{2}+3 x-4$
B. $g(x)=x^{2}-3 x-2$
E.
$g(x)=-x^{2}-3 x$
C. $g(x)=(x-1)^{2}+3(x-1)-2$
F.
$g(x)=x^{2}-3 x+2$
E. $g(x)=-x^{2}-3 x$

Question 8

The graph of

$$
y=-f(x)
$$

matches the graph of $f(x)$ but is reflected across the x-axis.

Question 8

The graph of

$$
y=-f(x)
$$

matches the graph of $f(x)$ but is reflected across the x-axis.
The graph of

$$
y=-f(x)-2
$$

matches the graph of $f(x)$ but reflected across the x-axis and shifted two units down.

