Question 1

Find the domain of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by:

$$
f(x)=\frac{1}{\sqrt{x-4}}
$$

A.
\mathbb{R}
B.
$(-\infty,-4)$
C.
$(-\infty, 4)$

D.	$\mathbb{R} \backslash 4$
E.	$(4, \infty)$
F.	$(0, \infty)$

Question 1

Find the domain of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by:

$$
f(x)=\frac{1}{\sqrt{x-4}}
$$

A.
\mathbb{R}
B.
$(-\infty,-4)$
C.
$(-\infty, 4)$

D.	$\mathbb{R} \backslash 4$
E.	$(4, \infty)$
F.	$(0, \infty)$

The domain of f is: $\mathrm{E} .(4, \infty)$ or $\{x: x>4\}$

Question 1

We need to find all values of x for which

$$
f(x)=\frac{1}{\sqrt{x-4}}
$$

is a real number. This is happens when $\sqrt{x-4}$ is real and positive.

Question 1

We need to find all values of x for which

$$
f(x)=\frac{1}{\sqrt{x-4}}
$$

is a real number. This is happens when $\sqrt{x-4}$ is real and positive.

This in turn is true when $x>4$, so the domain is

$$
D_{f}=\{x: x>4\} \quad=\quad(4, \infty)
$$

Question 2

Find the range of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by:

$$
f(x)=\frac{1}{\sqrt{x-4}}
$$

A.
\mathbb{R}
B.
$(-\infty, 4)$
C.
$(-\infty, 0)$

D.	$\mathbb{R} \backslash 4$
E.	$(4, \infty)$
F.	$(0, \infty)$

Question 2

Find the range of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by:

$$
f(x)=\frac{1}{\sqrt{x-4}}
$$

A.
\mathbb{R}
B. $(-\infty, 4)$
C. $(-\infty, 0)$

D.	$\mathbb{R} \backslash 4$
E.	$(4, \infty)$
F.	$(0, \infty)$

The range of f is: $\quad \mathrm{F} . \quad(0, \infty)$

Question 2

Usually you can get an idea of the range by evaluating f for the smallest and larges values in the domain, $(4, \infty)$ in this case. When x becomes very large, $\sqrt{x-4}$ becomes very large, and

$$
f(x)=\frac{1}{\sqrt{x-4}}
$$

becomes very small, but always greater than zero.

Question 2

Usually you can get an idea of the range by evaluating f for the smallest and larges values in the domain, $(4, \infty)$ in this case. When x becomes very large, $\sqrt{x-4}$ becomes very large, and

$$
f(x)=\frac{1}{\sqrt{x-4}}
$$

becomes very small, but always greater than zero.
When x is close to $4, f(x)$ is very large and positive, tending to ∞ as $x \rightarrow 4$. So the range is:

$$
R_{f}=\{x: 0<x<\infty\} \quad=\quad(0, \infty)
$$

Question 3

Find the domain of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by:

$$
f(x)=\frac{1}{\sqrt{1+x^{2}}}
$$

A.
\mathbb{R}
B.
$(-\infty,-1)$
C.
$(-\infty, 1)$
D. $\quad \mathbb{R} \backslash-1$
E. $(-1, \infty)$
F. $(1, \infty)$

Question 3

Find the domain of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by:

$$
f(x)=\frac{1}{\sqrt{1+x^{2}}}
$$

A.
\mathbb{R}
B. $(-\infty,-1)$
C. $(-\infty, 1)$
D. $\mathbb{R} \backslash-1$
E. $(-1, \infty)$
F. $(1, \infty)$

The domain of f is: A. \mathbb{R} or $(-\infty, \infty)$

Question 3

The domain of this function is the set of real numbers for which

$$
\sqrt{1+x^{2}}>0
$$

is real and positive, but since the smallest value x^{2} can assume is zero, $1+x^{2}$ is always positive.

Question 3

The domain of this function is the set of real numbers for which

$$
\sqrt{1+x^{2}}>0
$$

is real and positive, but since the smallest value x^{2} can assume is zero, $1+x^{2}$ is always positive.

Consequently, the domain is all real numbers,

$$
D_{f}=\mathbb{R} \quad=\quad(-\infty, \infty)
$$

Question 4

Find the range of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by:

$$
f(x)=\frac{1}{\sqrt{1+x^{2}}}
$$

A.
\mathbb{R}
B. $(-1,0)$
C.
$(-\infty, 1)$
D. $(-1,1)$
E. $(-1, \infty)$
F. $(0,1]$

Question 4

Find the range of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by:

$$
f(x)=\frac{1}{\sqrt{1+x^{2}}}
$$

A.
\mathbb{R}
B. $(-1,0)$
C. $(-\infty, 1)$
D. $(-1,1)$
E. $(-1, \infty)$
F. $(0,1]$

The range of f is: $\quad \mathbf{F} . \quad(0,1]$

Question 4

The largest value of $f(x)$ occurs when the denominator is as small as possible, which happens when $x=0$. In this case

$$
f(x)=\frac{1}{\sqrt{1+x^{2}}}=\frac{1}{\sqrt{1}}=1
$$

Question 4

The largest value of $f(x)$ occurs when the denominator is as small as possible, which happens when $x=0$. In this case

$$
f(x)=\frac{1}{\sqrt{1+x^{2}}}=\frac{1}{\sqrt{1}}=1
$$

For values of x larger than zero in absolute value, $f(x)$ is between 0 and 1 , so the range is:

$$
R_{f}=\{x: 0<x<\leq 1\}=(0,1]
$$

Question 5

Find the domain of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by:

$$
f(x)=\frac{1}{x^{2}-4}
$$

A.
\mathbb{R}
B. $\mathbb{R} \backslash\{-2,2\}$
C. $(-\infty,-2) \cup(2, \infty)$
D. $\mathbb{R} \backslash\{2\}$
E. $(-2,2)$
F. $(2, \infty)$

Question 5

Find the domain of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by:

$$
f(x)=\frac{1}{x^{2}-4}
$$

A.

B. $\quad \mathbb{R} \backslash\{-2,2\}$
C. $(-\infty,-2) \cup(2, \infty)$
D. $\mathbb{R} \backslash\{2\}$
E. $(-2,2)$
F. $(2, \infty)$

The domain of f is: \quad B. $\mathbb{R} \backslash\{-2,2\}$

Question 5

The domain of a rational function is the set of real numbers for which the denominator is not zero. So we have to exclude values of x that satisfy

$$
x^{2}-4=0
$$

Question 5

The domain of a rational function is the set of real numbers for which the denominator is not zero. So we have to exclude values of x that satisfy

$$
x^{2}-4=0
$$

Factoring the left hand side as $(x-2)(x+2)$, we see that the values we have to exclude are 2 and -2 .

$$
D_{f}=\mathbb{R} \backslash\{-2,2\} \quad=\quad(-\infty,-2) \cup(-2,2) \cup(2, \infty)
$$

Question 6

Find the range of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by:

$$
f(x)=\frac{1}{x^{2}-4}
$$

A.
\mathbb{R}
B. $(-\infty, 0)$
C. $(-\infty,-1 / 4) \cup(0, \infty)$
D. $(0, \infty)$
E. $(-1 / 4, \infty)$
F. $(-1 / 4,0)$

Question 6

Find the range of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by:

$$
f(x)=\frac{1}{x^{2}-4}
$$

A. \mathbb{R}
B. $(-\infty, 0)$
C. $(-\infty,-1 / 4) \cup(0, \infty)$
D. $(0, \infty)$
E. $(-1 / 4, \infty)$
F. $(-1 / 4,0)$

The range of f is: \quad C. $\quad(-\infty,-1 / 4) \cup(0, \infty)$

Question 6

The graph of this function is:

