MA125 Exam 3 Version 1

Name:

*1) Find two numbers x and y whose sum is 1 that make

$$x^2 + 4y$$

is as small as possible.

*2) We want to find the critical numbers of

$$f(x) = \frac{x^4}{4} - \frac{x^2}{2} - 2x$$

on the interval [1, 3]. If Newton's method is used to find the points where f'(x) = 0 with a starting value $x_0 = 1$, what is x_2 ?

*3) Find the absolute maximum and minimum of the function

$$f(x) = x\sqrt{1-x}$$
 on $[-1, 1]$

*4) Find the point on the graph of

$$f(x) = \sqrt{x+1}$$

that is closest to the origin.

$$\lim_{x \to 0} \frac{e^{4x} - 1 - 4x}{x^2}$$

*6) Find the area between the graph of

$$f(x) = 3x^2 + 2x + 5$$

and the x-axis between 0 and 3.

*7) Find the most general antiderivative of

$$f(x) = xe^x + e^x$$

*8) Find g'(x) if a is a constant and

$$g(x) = \int_a^x \frac{t-a}{\sqrt{t^2-a^2}} dt$$

$$f(x) = 2x^3 + 3x^2 - 12x + 3$$

- **9a)** Which of the following lists contains **all** of the intervals on which *f* is increasing?
 - a) $(-\infty, -2), (1/2, \infty)$
 - b) (-2,1)
 - c) $(-\infty, -2), (1, \infty)$
 - d) (-1,2)
 - e) $(-\infty, \infty)$
- **9b)** Which (if any) of the following conclusions can we draw from Rolle's Theorem?
 - a) f'(c) = 0 for some $c \in (1, 2)$
 - b) f'(c) = 0 for some $c \in (0, 2)$
 - c) f'(c) = 0 for some $c \in (0, 1)$
 - d) f'(c) = 0 for some $c \in (-2, 1)$
 - e) None of the above.
- **9c)** Which of the following lists contains **all** of the intervals on which *f* is concave up?
 - a) $(-1,\infty)$
 - b) $(-1/2, \infty)$
 - c) $(-\infty, -1/2), (1, \infty)$
 - d) (-1/4,1)
 - e) $(-\infty, -1/2)$
- **9d)** Which (if any) of the following conclusions can we draw from the Mean Value Theorem?
 - a) f'(c) = 16 for some $c \in (-2, 1)$
 - b) $f'(c) = 3 \text{ for some } c \in (-2, 1)$
 - c) f'(c) = 7 for some $c \in (-2, 1)$
 - d) f'(c) = -9 for some $c \in (-2, 1)$
 - e) None of the above, the theorem does not apply
- **9e)** If g is a function with the property that f'(x) = g'(x) for $x \in (-2, 1)$, which of the following conclusions can be drawn?
 - a) The line tangent to f at x = 1 intersects the line tangent to g at x = 2
 - b) Secant lines to the graph of f and g drawn with $x_1 = 1$ and $x_2 = 2$ are parallel
 - c) The function h(x) = f(x) g(x) has a value of zero on (-1, 1)
 - d) f(0) = g(0)
 - e) None of the above

*10) Find a function f that satisfies:

$$f'(x) = x^2 + \frac{1}{x}$$
 and $f(1) = 2$