MA125 Exam 3 Version 1

Name:

1) Find two positive numbers x and y such that $x y=1$ and the sum

$$
x^{2}+y^{2}
$$

is as small as possible.
2) The curves $f(x)=x^{2}$ and $g(x)=\sin x$ intersect somewhere between 0.5 and 1.0. If we are using Newton's method to find the x-coordinate of the point of intersection with a starting value of $x_{0}=1$, what is the value of x_{2} ?
3) Find the absolute maximum and minimum of the function

$$
f(x)=x^{3}-6 x^{2}+9 x+1 \quad \text { on } \quad[2,4]
$$

4) Find the coordinates of the point on the line

$$
y=4-x
$$

that is closest to $(1,0)$.
5) Find

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}
$$

6) If

$$
f(x)=3 x^{2}+2 x+5
$$

Find all numbers c that satisfy the conclusion of the Mean Value Theorem on $[-1,1]$.

7a) If $f(x)=x^{2}-4 x+1$, which (if any) of the following conclusions can we draw from the Mean Value Theorem?
a) $f^{\prime}(c)=5$ for some $c \in(1,2)$
b) $f^{\prime}(c)=5$ for some $c \in(0,2)$
c) $f^{\prime}(c)=5$ for some $c \in(2,3)$
d) $f^{\prime}(c)=5$ for some $c \in(-1,1)$
e) None of the above

7b) If $f(x)=2 x^{3}-4 x^{2}-10 x+12$, which (if any) of the following conclusions can we draw from Rolle's Theorem?
a) $f^{\prime}(c)=0$ for some $c \in(0,2)$
b) $f^{\prime}(c)=0$ for some $c \in(1,4)$
c) $f^{\prime}(c)=0$ for some $c \in(2,3)$
d) $f^{\prime}(c)=0$ for some $c \in(-2,1)$
e) None of the above

7c) If $f^{\prime}(x)=0$ for every $x \in(-1,4)$, which of the following conclusions can be drawn?
a) $f(2) \cdot f(3)>0$
b) $f(1)=0$
c) $f(3)-f(0)>0$
d) $(f(1)-f(2))(f(1)+f(2))=0$ if $f(1) \neq 0$
e) None of the above

7d) If $f^{\prime}(x)=g^{\prime}(x)$ for $x \in(-3,3)$, which of the following conclusions can be drawn?
a) The line tangent to f at $x=1$ intersects the line tangent to g at $x=2$
b) Secant lines to the graph of f and g drawn with $x_{1}=1$ and $x_{2}=2$ are parallel
c) The function $h(x)=f(x)-g(x)$ has a value of zero on $[-1,1]$
d) $f(0)=g(0)$
e) None of the above

7e) If f has a local minimum at $x=0$, what does Fermat's theorem say about $f^{\prime}(0)$?
a) $f^{\prime}(0)=0$
b) if $f^{\prime}(0)$ exists then $f^{\prime}(0)=0$
c) $f^{\prime}(0)>0$
d) $f^{\prime}(0)<0$
e) Either $f^{\prime}(0)=0$ or $f^{\prime}(0)$ does not exist

Suppose

$$
f(x)=4 x^{3}+3 x^{2}-6 x+1
$$

8a) Which of the following lists contains all of the intervals on which f is increasing?
a) $(-\infty,-1),(1 / 2, \infty)$
b) $(-\infty, 1 / 2)$
c) $(-\infty,-1),(1, \infty)$
d) $(-1,1 / 2)$
e) $(-\infty, \infty)$

8b) Which of the following lists contains all of the intervals on which f is decreasing?
a) $(-1,1 / 2)$
b) $(-\infty, \infty)$
c) $(-\infty, 1 / 2)$
d) $(-\infty,-1),(1, \infty)$
e) $(-\infty,-1),(1 / 2, \infty)$

8c) Which of the following lists contains all of the intervals on which f is concave up?
a) $(-1 / 4, \infty)$
b) $(-1 / 4, \infty)$
c) $(-\infty, 1 / 4),(1, \infty)$
d) $(-1 / 4,1)$
e) $(-\infty,-1 / 4)$

8d) Which of the following lists contains all of the intervals on which f is concave down?
a) $(-1 / 4,1)$
b) $(-1 / 4, \infty)$
c) $(-\infty,-1 / 4)$
d) $(-1 / 4, \infty)$
e) $(-\infty, 1 / 4),(1, \infty)$

8e) Which of the following lists contains all of the intervals on which f^{\prime} is increasing?
a) $(-\infty, 1 / 4),(1, \infty)$
b) $(-1 / 4,1)$
c) $(-1 / 4, \infty)$
d) $(-\infty,-1 / 4)$
e) $(-1 / 4, \infty)$
9) Find a function f that satisfies:

$$
f^{\prime}(t)=2 t-3 \sin t, \quad f(0)=3
$$

10) Find the limit:

$$
\lim _{x \rightarrow \infty} x^{3} e^{-x}
$$

