MA125 Exam 3 Version 1 Name:

1) Find two positive numbers x and y such that xy = 1 and the sum $x^2 + y^2$

is as small as possible.

2) The curves $f(x) = x^2$ and $g(x) = \sin x$ intersect somewhere between 0.5 and 1.0. If we are using Newton's method to find the *x*-coordinate of the point of intersection with a starting value of $x_0 = 1$, what is the value of x_2 ?

3) Find the absolute maximum and minimum of the function $f(x) = x^3 - 6x^2 + 9x + 1 \quad \text{on} \quad [2,4]$

4) Find the coordinates of the point on the line

$$y = 4 - x$$

that is closest to (1, 0).

5) Find

$$\lim_{x\to 0}\frac{1-\cos x}{x^2}$$

6) If

$$f(x) = 3x^2 + 2x + 5$$

Find all numbers c that satisfy the conclusion of the Mean Value Theorem on [-1, 1].

7a) If $f(x) = x^2 - 4x + 1$, which (if any) of the following conclusions can we draw from the Mean Value Theorem?

- a) f'(c) = 5 for some $c \in (1, 2)$
- b) f'(c) = 5 for some $c \in (0, 2)$
- c) f'(c) = 5 for some $c \in (2,3)$
- d) f'(c) = 5 for some $c \in (-1, 1)$
- e) None of the above

7b) If $f(x) = 2x^3 - 4x^2 - 10x + 12$, which (if any) of the following conclusions can we draw from Rolle's Theorem?

- a) f'(c) = 0 for some $c \in (0, 2)$
- b) f'(c) = 0 for some $c \in (1, 4)$
- c) f'(c) = 0 for some $c \in (2,3)$
- d) f'(c) = 0 for some $c \in (-2, 1)$
- e) None of the above

7c) If f'(x) = 0 for every $x \in (-1, 4)$, which of the following conclusions can be drawn?

- a) $f(2) \cdot f(3) > 0$
- b) f(1) = 0
- c) f(3) f(0) > 0
- d) (f(1) f(2))(f(1) + f(2)) = 0 if $f(1) \neq 0$
- e) None of the above

7d) If f'(x) = g'(x) for $x \in (-3, 3)$, which of the following conclusions can be drawn?

- a) The line tangent to f at x = 1 intersects the line tangent to g at x = 2
- b) Secant lines to the graph of f and g drawn with $x_1 = 1$ and $x_2 = 2$ are parallel
- c) The function h(x) = f(x) g(x) has a value of zero on [-1, 1]
- d) f(0) = g(0)
- e) None of the above

7e) If f has a local minimum at x = 0, what does Fermat's theorem say about f'(0)?

- a) f'(0) = 0
- b) if f'(0) exists then f'(0) = 0
- c) f'(0) > 0
- d) f'(0) < 0
- e) Either f'(0) = 0 or f'(0) does not exist

Suppose

$$f(x) = 4x^3 + 3x^2 - 6x + 1$$

8a) Which of the following lists contains **all** of the intervals on which *f* is increasing?

- a) $(-\infty, -1), (1/2, \infty)$ b) $(-\infty, 1/2)$ c) $(-\infty, -1), (1, \infty)$ d) (-1, 1/2)
- e) $(-\infty,\infty)$

8b) Which of the following lists contains **all** of the intervals on which f is decreasing?

a) (-1, 1/2)b) $(-\infty, \infty)$ c) $(-\infty, 1/2)$ d) $(-\infty, -1), (1, \infty)$ e) $(-\infty, -1), (1/2, \infty)$

8c) Which of the following lists contains **all** of the intervals on which f is concave up?

- a) $(-1/4, \infty)$
- b) $(-1/4,\infty)$
- c) $(-\infty, 1/4), (1, \infty)$
- d) (-1/4, 1)
- e) $(-\infty, -1/4)$

8d) Which of the following lists contains **all** of the intervals on which f is concave down?

- a) (-1/4, 1)
- b) $(-1/4,\infty)$
- c) $(-\infty, -1/4)$
- d) $(-1/4,\infty)$
- e) $(-\infty, 1/4), (1, \infty)$

8e) Which of the following lists contains **all** of the intervals on which f' is increasing?

- a) $(-\infty, 1/4), (1, \infty)$
- b) (-1/4, 1)
- c) $(-1/4, \infty)$
- d) $(-\infty, -1/4)$
- e) $(-1/4, \infty)$

9) Find a function f that satisfies:

$$f'(t) = 2t - 3\sin t$$
, $f(0) = 3$

10) Find the limit:

 $\lim_{x\to\infty} x^3 e^{-x}$