MA125 Exam 3 Version 2

Name:

1) Find the most general antiderivative of

$$
f(x)=x e^{x}+e^{x}
$$

2) Find the point on the graph of

$$
f(x)=\sqrt{x+1}
$$

that is closest to the origin.
3) Find

$$
\lim _{x \rightarrow 0} \frac{e^{4 x}-1-4 x}{x^{2}}
$$

4) Find $g^{\prime}(x)$ if a is a constant and

$$
g(x)=\int_{a}^{x} \frac{t-a}{\sqrt{t^{2}-a^{2}}} d t
$$

5) Find the absolute maximum and minimum of the function

$$
f(x)=x \sqrt{1-x} \quad \text { on } \quad[-1,1]
$$

6) Find two numbers x and y whose sum is 1 that make

$$
x^{2}+4 y
$$

is as small as possible.
7) Find the area between the graph of

$$
f(x)=3 x^{2}+2 x+5
$$ and the x-axis between 0 and 3 .

8) Find a function f that satisfies:

$$
f^{\prime}(x)=x^{2}+\frac{1}{x} \quad \text { and } \quad f(1)=2
$$

Suppose

$$
f(x)=2 x^{3}+3 x^{2}-12 x+3
$$

9a) Which of the following lists contains all of the intervals on which f is increasing?
a) $(-\infty,-2),(1 / 2, \infty)$
b) $(-2,1)$
c) $(-1,2)$
d) $(-\infty,-2),(1, \infty)$
e) $(-\infty, \infty)$

9b) Which (if any) of the following conclusions can we draw from Rolle's Theorem?
a) $f^{\prime}(c)=0$ for some $c \in(1,2)$
b) $f^{\prime}(c)=0$ for some $c \in(0,2)$
c) $f^{\prime}(c)=0$ for some $c \in(0,1)$
d) $f^{\prime}(c)=0$ for some $c \in(-2,1)$
e) None of the above.

9c) Which of the following lists contains all of the intervals on which f is concave up?
a) $(-1 / 2, \infty)$
b) $(-1, \infty)$
c) $(-\infty,-1 / 2),(1, \infty)$
d) $(-1 / 4,1)$
e) $(-\infty,-1 / 2)$

9d) Which (if any) of the following conclusions can we draw from the Mean Value Theorem?
a) $f^{\prime}(c)=16$ for some $c \in(-2,1)$
b) $f^{\prime}(c)=-9$ for some $c \in(-2,1)$
c) $f^{\prime}(c)=3$ for some $c \in(-2,1)$
d) $f^{\prime}(c)=7$ for some $c \in(-2,1)$
e) None of the above, the theorem does not apply

9e) If g is a function with the property that $f^{\prime}(x)=g^{\prime}(x)$ for $x \in$ $(-2,1)$, which of the following conclusions can be drawn?
a) The line tangent to f at $x=1$ intersects the line tangent to g at $x=2$
b) Secant lines to the graph of f and g drawn with $x_{1}=1$ and $x_{2}=2$ are parallel
c) The function $h(x)=f(x)-g(x)$ has a value of zero on $(-1,1)$
d) $f(0)=g(0)$
e) None of the above
10) We want to find the critical numbers of

$$
f(x)=\frac{x^{4}}{4}-\frac{x^{2}}{2}-2 x
$$

on the interval $[1,3]$. If Newton's method is used to find the points where $f^{\prime}(x)=0$ with a starting value $x_{0}=1$, what is x_{2} ?

