Name:

1) A quart of milk is removed from a refrigerator at a temperature of $33^{\circ} \mathrm{F}$ and placed on a table in a room where the temperature is $73^{\circ} \mathrm{F}$. After 30 minutes, it has warmed to $38^{\circ} \mathrm{F}$. How long after it is removed from the refrigerator does the milk reach $45^{\circ} F$?
2) A particle starts at $(0,1)$ and moves along the line tangent to

$$
y=\cosh x+\frac{\sinh x}{2} \quad \text { at } x=0
$$

What is the y-coordinate of the particle (on the tangent line) when the x-coordinate is 1 ?
3) Assume that a tumor begins with a single cell and the rate of change of the number of cells at time t is proportional to the number of cells at time t, that is,

$$
\frac{d P(t)}{d t}=k \cdot A(t)
$$

After two weeks, the tumor has 32 cells.
a) What is the value of the growth constant k ?
b) How many cells are in the tumor after 5 weeks?
c) What is the doubling time of the tumor?
4) A particle moves along the curve $y=\sqrt{1+2 x}$ in the first quadrant $(x \geq 0, y \geq 0)$. The x-coordinate is increasing at a rate of $0.3 \mathrm{~cm} / \mathrm{sec}$. How fast is the distance from the particle to the origin increasing when $x=1.5$?
5) At a certain point in time ship A is 20 km west of a port and sailing towards it at $30 \mathrm{~km} / \mathrm{hr}$. Ship B left the port an hour earlier and has been sailing north at $25 \mathrm{~km} / \mathrm{hr}$. What is the rate of change of the distance between the two ships at this point in time?
6) A cylindrical tank has a radius of 20 ft at its base. If water is being added at $5 \mathrm{ft}^{3} / \mathrm{min}$, how fast is the water rising in the tank?
7) According to the special theory of relativity, the mass m of a particle depends on its velocity v according to the equation

$$
m=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

where the following are constants:

- m_{0} is the mass when the particle is at rest $(v=0)$
- c is the speed of light

If the velocity is changing (i.e., the particle is accelerating), what is the rate of change of m with respect to v ? (i.e., what is the change in m per unit change in v).
8) A well-known trigonometric identity states that

$$
\cos (x+y)=\cos x \cos y-\sin x \sin y
$$

Use this identity to find an expression for y^{\prime} given that x and y satisfy the equation

$$
\cos (x+y)=x^{2}
$$

9) The equation relating pressure and volume for a monatomic ideal gas undergoing a reversible adiabatic process is:

$$
P V^{\frac{5}{3}}=k
$$

where P is the pressure, V is the volume, and k is a constant. What is the rate of change of volume per unit change in pressure P ?
10) One angle of a triangle has measure $C=\pi / 3$ in radians. Side b is adjacent to angle C and has length 10 cm . Side a is also adjacent to angle C and is increasing at a rate of $2 \mathrm{~cm} / \mathrm{sec}$. How fast is side c (which is opposite angle C) increasing when the length of side a is 15 cm ?

Formulas:

Volume of a sphere $\quad V=\frac{4}{3} \pi r^{3}$
Volume of a cylinder $\quad V=\pi r^{2} h$
Volume of a cone $\quad V=\frac{1}{3} \pi r^{2} h$
Surface area of a sphere $A=4 \pi r^{2}$
Hyperbolic functions $\quad \sinh x=\frac{e^{x}-e^{-x}}{2} \quad \cosh x=\frac{e^{x}+e^{-x}}{2}$
Pythagorean theorem $\quad c^{2}=a^{2}+b^{2}$
Law of cosines
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

