The Uniform Distribution

Gene Quinn

Uniform Distribution

The "classical model" or "combinatorial model" is used to describe discrete probability experiments which have equally likely outcomes.

Uniform Distribution

The "classical model" or "combinatorial model" is used to describe discrete probability experiments which have equally likely outcomes.

If the experiment is dealing a 5 -card poker hand, each of the ${ }_{52} \mathrm{C}_{5}$ possible hands is considered equally likely.
If the experiment is dealing a 13-card bridge hand, each of the ${ }_{52} C_{13}$ possible hands is considered to be equally likely.
If the experiment is spinning a roulette wheel, each of the 38 outcomes $\{00,0,1, \ldots, 36\}$ is considered equally likely.

Uniform Distribution

The "classical model" or "combinatorial model" is used to describe discrete probability experiments which have equally likely outcomes.

If the experiment is dealing a 5 -card poker hand, each of the ${ }_{52} \mathrm{C}_{5}$ possible hands is considered equally likely.
If the experiment is dealing a 13-card bridge hand, each of the ${ }_{52} C_{13}$ possible hands is considered to be equally likely.
If the experiment is spinning a roulette wheel, each of the 38 outcomes $\{00,0,1, \ldots, 36\}$ is considered equally likely.
An analogous model with a continuous sample space would be the following experiment:
Choose a real number at random from the interval $[0,1]$, with each number in the interval equally likely to be chosen.

Probability Density Function

If X is a random variable with the uniform distribution, its probability density function (pdf) is:

$$
f_{X}(x)= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Probability Density Function

If X is a random variable with the uniform distribution, its probability density function (pdf) is:

$$
f_{X}(x)= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

A simpler way of writing this is

$$
f_{X}(x)=1, \quad 0 \leq x \leq 1
$$

with the implicit understanding that outside of its support (the closed interval $[0,1]$), the pdf is zero.
It is easy to verify that, if we integrate the pdf over its support, the result is 1 :

$$
\int_{0}^{1} 1 d x=1
$$

Cumulative Distribution Function

The cumulative distribution function for the uniform distribution is

$$
F_{X}(x)=P(X \leq x)=\int_{0}^{x} 1 d t=x
$$

Moments

The expected value of a uniform random variable is

$$
\mathrm{E}(X)=\int_{0}^{1} x \cdot 1 d x=\frac{1}{2}
$$

The expected value of its square is

$$
\mathrm{E}\left(X^{2}\right)=\int_{0}^{1} x^{2} \cdot 1 d x=\frac{1}{3}
$$

Its variance is

$$
\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}=\frac{1}{3}-\frac{1}{4}=\frac{1}{12}
$$

Role in Computer Simulations

The uniform distribution plays an important role in computer simulations or Monte Carlo experiments.

Most software packages, calculators, and spreadsheets have a built-in function, often called $R A N D()$, that returns a uniform random variate.

One technique for producing a random variate with cumulative distribution $F(x)$ is the following:

- 1) generate a uniform random variate X
- 2) The variable $Y=F^{-1}(X)$ will have the desired distribution

Congruential Generators

A very common technique for generating psuedorandom numbers with a uniform distribution is based on a sequence of nonnegative integers $\left\{x_{n}\right\}$ defined by a recursive formula, say

$$
x_{n+1}=k \cdot x_{n}(\operatorname{modulo}(m)), \quad n=0,1, \ldots
$$

A result from number theory states that it is possible to choose k and m so that regardless of the starting value or seed x_{0}, every number in the set $\{0,1, \ldots, m-1\}$ will appear before any of them repeats.

If m is taken to be a large number, say $2^{31}-1$, each of the roughly 2 billion integers in the sequence will appear once before any repeat.

Congruential Generators

If we generate a recursive sequence

$$
x_{n+1}=k \cdot x_{n}(\operatorname{modulo}(m)), \quad n=0,1, \ldots
$$

and divide each entry by m, we obtain a sequence of numbers in the interval $[0,1]$ that may be a reasonable approximation to the outcome of the following experiment:

Choose a number from the interval $[0,1]$ at random, with each number being equally likely to be chosen. Repeat this procedure independently m times.

Congruential Generators

If we generate a recursive sequence

$$
x_{n+1}=k \cdot x_{n}(\operatorname{modulo}(m)), \quad n=0,1, \ldots
$$

and divide each entry by m, we obtain a sequence of numbers in the interval $[0,1]$ that may be a reasonable approximation to the outcome of the following experiment:

Choose a number from the interval $[0,1]$ at random, with each number being equally likely to be chosen. Repeat this procedure independently m times.

We call this a psuedorandom number generator because it is completely deterministic. While there will be no repeats in the first m integers in the recursive sequence, once the first repeat occurs, the next m terms exactly reproduce the sequence of the first m terms. Also, given the same seed x_{0}, the sequence produced will always be the same.

