1) Random variable Y has density function:

$$
f(y)=\frac{1}{2} y^{2} e^{-y}, \quad y \in[0, \infty)
$$

Find the density function of the random variable $U=Y^{2}$.
Solution: Let

$$
u=h(y)=y^{2} \quad \text { then } \quad y=h^{-1}(u)=\sqrt{u}, \quad u \in[0, \infty)
$$

and

$$
\frac{d}{d u} h^{-1}(u)=\frac{1}{2 \sqrt{u}}
$$

so

$$
f_{u}(u)=f_{y}\left(h^{-1}(u)\right) \cdot\left|\frac{d}{d u} h^{-1}(u)\right|
$$

and on substitution

$$
f_{u}(u)=\frac{1}{2}(\sqrt{u})^{2} e^{-\sqrt{u}} \cdot \frac{1}{2 \sqrt{u}}=\frac{\sqrt{u}}{4} e^{-\sqrt{u}}
$$

2) A random vector $Y=\left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$ has n independent, identically distributed components each with density function

$$
f\left(y_{i}\right)=\frac{1}{\beta} e^{-y / \beta}, \quad y \in[0, \infty)
$$

a) Find the density function of $U=Y_{1}+Y_{2}+\cdots+Y_{n}$.

Solution: Observe that each Y_{i} has an exponential distribution, with moment-generating function

$$
m_{y}(t)=\frac{1}{1-\beta t}
$$

The moment-generating function of the sum of independent random variables is the product of their moment-generating functions, so by Theorem 6.2,

$$
m_{u}(t)=\Pi_{i=1}^{n} m_{y_{i}}(t)=\Pi_{i=1}^{n} \frac{1}{1-\beta t}=(1-\beta t)^{-n}
$$

This function can be recognized as the moment-generating function of a gamma random variable with parameters $\alpha=n$ and $\beta=\beta$, so

$$
U \sim \operatorname{gamma}(n, \beta)
$$

b) Find the mean and variance of U.

Since U is a gamma random variable, the mean μ and variance σ^{2} of U are given by:

$$
\mu=\alpha \beta=n \beta \quad \text { and } \quad \sigma^{2}=\alpha \beta^{2}=n \beta^{2}
$$

3) A random variable Y has density function

$$
\left\{\begin{array}{lll}
f(y) & \text { if } & 0 \leq y \leq 1 \\
0 & & \text { otherwise }
\end{array}\right.
$$

Find the density function and interval of support for the random variable

$$
U=a Y, \quad a>0
$$

Solution: Let

$$
u=h(y)=a y \quad \text { then } \quad y=h^{-1}(u)=\frac{1}{a} \cdot u, \quad u \in[0, a]
$$

and

$$
\frac{d}{d u} h^{-1}(u)=\frac{1}{a}
$$

so

$$
f_{u}(u)=f_{y}\left(h^{-1}(u)\right) \cdot\left|\frac{d}{d u} h^{-1}(u)\right|
$$

and on substitution

$$
f_{u}(u)=\frac{1}{a} f(u / a)
$$

4) A random vector $Y=\left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$ has n independent, identically distributed components each with a uniform distribution on $[0,1]$.
The a) Find the density function $g_{(k)}\left(y_{k}\right)$ of the $k^{t h}$ order statistic, where $1 \leq k \leq n$. (Section 6.7)

By Theorem 6.5, the density function of the $k^{\text {th }}$ order statistic $(1 \leq$ $k \leq n)$ is:

$$
g_{(k)}(y)=\frac{n!}{(k-1)!(n-k)!}[F(y)]^{k-1}[1-F(y)]^{n-k} f\left(y_{k}\right), \quad 0 \leq y \leq 1
$$

The density function $f(y)$ and cumulative distribution function $F(y)$ are:

$$
f(y)=1 \quad \text { and } \quad F(y)=\int_{0}^{y} f(t) d t=\int_{0}^{y} d t=y, \quad 0 \leq y \leq 1
$$

SO

$$
g_{(k)}(y)=\frac{n!}{(k-1)!(n-k)!}[y]^{k-1}[1-y]^{n-k} \cdot 1, \quad 0 \leq y \leq 1
$$

If k is a positive integer,

$$
\Gamma(k)=\int_{0}^{\infty} t^{k-1} e^{-t} d t=(k-1)!
$$

so letting $\alpha=k$ and $\beta=n-k+1$, we can write the density function as:

$$
g_{(k)}(y)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}[y]^{\alpha-1}[1-y]^{\beta-1}, \quad 0 \leq y \leq 1
$$

which is a beta density.
b) Find the mean and variance of the $k^{\text {th }}$ order statistic $Y_{(k)}$. (hint: see if you can recognize the density function in part a) as one that appears in the back cover of the text).
Solution: From the back cover of the text, the mean is:

$$
\mu=\frac{\alpha}{\alpha+\beta}=\frac{k}{n-1}
$$

and the variance is:

$$
\sigma^{2}=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}=\frac{k(n-1)}{n \cdot(n-1)^{2}}
$$

5) Suppose Y_{1} has a chi-sqare distribution with 6 degrees of freedom, and Y_{2} has a chi-square distribution with 15 degrees of freedom, and Y_{1} and Y_{2} are independently distributed.
a) Identify the distribution of the random variable $U=Y_{1}+Y_{2}$.

Solution: Since Y_{1} and Y_{2} are independent, the moment-generating function of their sum will be the product of their moment-generating functions (using the back cover of the text),

$$
m_{u}(t)=(1-2 t)^{-6 / 2}(1-2 t)^{-15 / 2}=(1-2 t)^{-21 / 2}
$$

which is the moment-generating function of a chi-square distribution with $6+15=21$ degrees of freedom.
b) What is the density function of U ?

From the back cover of the text with $\nu=21$,

$$
f(y)=\frac{(y)^{(21 / 2)-1} e^{-y / 2}}{2^{(21 / 2)} \Gamma(21 / 2)} \quad y>0
$$

c) What are the mean and variance of U ?

Again from the back cover of the text,

$$
\mu=\nu=21 \quad \text { and } \quad \sigma^{2}=2 \nu=42
$$

