Name:

1) Random variable Y has density function:

$$
f(y)=\frac{1}{2} y^{2} e^{-y}, \quad y \in[0, \infty)
$$

Find the density function of the random variable $U=Y^{2}$.
2) A random vector $Y=\left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$ has n independent, identically distributed components each with density function

$$
f\left(y_{i}\right)=\frac{1}{\beta} e^{-y / \beta}, \quad y \in[0, \infty)
$$

a) Find the density function of $U=Y_{1}+Y_{2}+\cdots+Y_{n}$.
b) Find the mean and variance of U.
3) A random variable Y has density function

$$
\left\{\begin{array}{lll}
f(y) & \text { if } & 0 \leq y \leq 1 \\
0 & & \text { otherwise }
\end{array}\right.
$$

Find the density function and interval of support for the random variable

$$
U=a Y, \quad a>0
$$

4) A random vector $Y=\left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$ has n independent, identically distributed components each with a uniform distribution on $[0,1]$.
a) Find the density function $g_{(k)}\left(y_{k}\right)$ of the $k^{\text {th }}$ order statistic, where $1<k<n$. (Section 6.7)
b) Find the mean and variance of the $k^{t h}$ order statistic $Y_{(k)}$. (hint: see if you can recognize the density function in part a) as one that appears in the back cover of the text).
5) Suppose Y_{1} has a chi-sqare distribution with 6 degrees of freedom, and Y_{2} has a chi-square distribution with 15 degrees of freedom, and Y_{1} and Y_{2} are independently distributed.
a) Identify the distribution of the random variable $U=Y_{1}+Y_{2}$.
b) What is the density function of U ?
c) What are the mean and variance of U ?
