Name:

1) Time to respond for 911 calls was measured for 75 calls in two cities, $C 1$ and $C 2$. The results of the study were:

Measure	C1	C2
Sample size	75	75
Sample mean	5.4	6.1
Sample variance	1.57	2.54

This problem is solved exactly like Example 8.3 in the text. a) Estimate the difference in the mean response time for the two cities.
The point estimate of $\mu_{1}-\mu_{2}$ is

$$
\bar{y}_{1}-\bar{y}_{2}=5.4-6.1=-0.7
$$

b) Find a bound for the error of estimation. See Example 8.3 in the text. The standard deviation of the estimated difference is:

$$
\sigma_{\bar{Y}_{1}-\bar{Y}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \approx \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}=\sqrt{\frac{1.57}{75}+\frac{2.54}{75}}=0.234
$$

The probability that the error of estimation is less than $\sigma_{\bar{Y}_{1}-\bar{Y}_{2}} \approx$ $2(0.234)=0.468$ is .95 . (two standard deviations)
2) An exit poll of 1,000 voters finds that 530 supported a certain candidate.
a) Estimate the proportion of the voting population that supports the candidate.

The estimator is

$$
\hat{p}=\frac{y}{n}=\frac{530}{1000}=0.530
$$

b) Find a bound for the error of estimation. The standard error for the estimator \hat{p} is given by:

$$
\sigma_{\hat{p}}=\sqrt{\frac{p q}{n}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=\sqrt{\frac{0.53 \cdot 0.47}{1000}}=0.0158
$$

With probability .95, the error of estimation is less than $2 \sigma_{\hat{p}}=0.0316$
3) Suppose Y is a single observation from an exponential distribution with unknown mean θ.
a) Use the method of moment-generating functions to show that $2 Y / \theta$ is a pivotal quantity having a χ^{2} distribution with two degrees of freedom.
From the table in the back of the text, the moment-generating function of y is

$$
m_{y}(t)=(1-\theta t)^{-1}
$$

so the moment-generating function of $u=2 Y / \theta$ is

$$
m_{u}(t)=m_{y}\left(\frac{2}{\theta} t\right)=(1-2 t)^{-1}
$$

Comparing this to the table in the back cover of the text, we see this is the moment-generating function of a Chi-square random variable with 2 degrees of freedom.
b) Use the pivotal quantity from part a) to derive a 90% confidence interval for θ. Compare your result with Example 8.4 in the text.
We need to find bounds L and U so that

$$
P\left(L \leq \chi_{2}^{2} \leq U\right)=0.90
$$

There are many intervals that satisfy this inequality, but only one is symmetric in the sense that the areas under the graph of the density function from zero to L and from U to infinity are both 0.05 .

We can find the value of L and U from the table in the back of the text (use the row with $\mathrm{df}=2$). The value of L is under the column heading $\chi_{0.950}^{2}$ and is 0.102587 . The value of U is under the column heading $\chi_{0.050}^{2}$ and is 5.99147. You can also obtain these from a spreadsheet with the formulas

$$
L=\operatorname{CHIINV}(0.95,2) \quad \text { and } \quad U=\operatorname{CHIINV}(0.05,2)
$$

so, for a Chi-square variable with 2 degrees of freedom,

$$
P\left(0.102587 \leq \chi_{2}^{2} \leq 5.99147\right)=0.90
$$

substituting $2 Y / \theta$ into this inequality for χ_{2}^{2} we get:

$$
P\left(0.102587 \leq \frac{2 Y}{\theta} \leq 5.99147\right)=0.90
$$

which rearranges to

$$
P\left(\frac{2 Y}{5.99147} \leq \theta \leq \frac{2 Y}{0.102587}\right)=0.90
$$

Note that this produces the same confidence interval as the one obtained in Example 8.4.
4) Now suppose $\left(Y_{1}, \ldots, Y_{9}\right)$ is a sample of size $n=9$ from an exponential distribution with mean θ.
a) Use the method of moment-generating functions to show that

$$
\frac{2}{\theta} \sum_{i=1}^{9} Y_{i}
$$

is a pivotal quantity having a χ^{2} distribution with 18 degrees of freedom.

Because the Y_{i} s are independent, moment-generating function of their sum is the product of their individual moment-generating functions, so

$$
m_{\sum Y_{i}}(t)=\prod_{i=1}^{9} m_{y}(t)=(1-\theta t)^{-9}
$$

and the moment-generating function of $2 / \theta$ times the sum of the $Y_{i} \mathrm{~S}$ is:

$$
m_{2 / \theta \sum}(t)=m_{\sum Y_{i}}(2 t / \theta)=(1-2 t)^{-9}
$$

which from the tables in the back of the text is the moment-generating function of a Chi-square variable with 18 degrees of freedom.
b) Use the pivotal quantity from part a) to derive a 95% confidence interval for θ.

As before we start by finding L and U such that

$$
P\left(L \leq \chi_{18}^{2} \leq U\right)=0.95
$$

Either from the table in the text, or using
$L=\operatorname{CHIINV}(0.975,18)=8.23$ and $U=\operatorname{CHIINV}(0.025,18)=31.53$
we write

$$
P\left(8.23 \leq \frac{2 \sum_{i=1}^{9} Y_{i}}{\theta} \leq 31.53\right)=0.95
$$

which rearranges to

$$
P\left(\frac{2 \sum_{i=1}^{9} Y_{i}}{31.53} \leq \theta \leq \frac{2 \sum_{i=1}^{9} Y_{i}}{8.23}\right)=0.95
$$

5) Let $\left(Y_{1}, \ldots, Y_{5}\right)$ be a sample of size $n=5$ from a gamma distribution with $\alpha=2$ and β unknown.
a) Use the method of moment-generating functions to show that

$$
\frac{2}{\beta} \sum_{i=1}^{5} Y_{i}
$$

is a pivotal quantity having a χ^{2} distribution with 20 degrees of freedom.

Because the Y_{i} s are independent, moment-generating function of their sum is the product of their individual moment-generating functions, so

$$
m_{\sum Y_{i}}(t)=\prod_{i=1}^{5} m_{y}(t)=(1-\beta t)^{-2}
$$

and the moment-generating function of $2 / \beta$ times the sum of the $Y_{i} \mathrm{~S}$ is:

$$
m_{2 / \beta \sum}(t)=m_{\sum Y_{i}}(2 t / \beta)=(1-2 t)^{-10}
$$

which from the tables in the back of the text is the moment-generating function of a Chi-square variable with 20 degrees of freedom.
b) Use the pivotal quantity from part a) to derive a 95% confidence interval for θ.
As before we start by finding L and U such that

$$
P\left(L \leq \chi_{20}^{2} \leq U\right)=0.95
$$

Either from the table in the text, or using
$L=\operatorname{CHIINV}(0.975,20)=9.59$ and $U=\operatorname{CHIINV}(0.025,20)=34.17$
we write

$$
P\left(9.59 \leq \frac{2 \sum_{i=1}^{5} Y_{i}}{\beta} \leq 34.17\right)=0.95
$$

which rearranges to

$$
P\left(\frac{2 \sum_{i=1}^{5} Y_{i}}{34.17} \leq \beta \leq \frac{2 \sum_{i=1}^{5} Y_{i}}{9.59}\right)=0.95
$$

