Probability Overview

Gene Quinn

Experiments and Outcomes

An **experiment** is a procedure which:

- 1) Has a well-defined set of possible results known as **outcomes** and
- 2) Can be repeated an infinite number of times (at least in theory).

Experiments and Outcomes

An **experiment** is a procedure which:

- 1) Has a well-defined set of possible results known as **outcomes** and
- 2) Can be repeated an infinite number of times (at least in theory).

Each of the possible results is called a **sample outcome**

Sample Outcomes and Sample Spaces

The set of possible results or outcomes of an experiment taken as a whole is called the **sample space**.

Sample Outcomes and Sample Spaces

The set of possible results or outcomes of an experiment taken as a whole is called the **sample space**.

A subset of the sample space is called an event.

Events include:

- an individual outcome
- the entire sample space
- the empty set \emptyset

Probability Functions

A **probability function** is a real-valued function that maps *events* into real numbers in the closed interval [0, 1] in a manner that is consistent with the Kolmogorov axioms.

Probability Functions

A **probability function** is a real-valued function that maps *events* into real numbers in the closed interval [0, 1] in a manner that is consistent with the Kolmogorov axioms.

The domain of a probability function is a collection of sets, usually the power set of a sample space.

A probability function always takes values in [0, 1].

(You should convince yourself that choosing any values outside this interval would inevitably cause the Kolmogorov axioms to be violated)

Discrete Random Variables

Definition

- A **discrete random variable** is a *real-valued function* whose domain is a sample space *S* having finite or countably infinite cardinality.
- A random variable maps an outcome of an experiment into a real number.

Discrete Random Variables

Definition

- A **discrete random variable** is a *real-valued function* whose domain is a sample space *S* having finite or countably infinite cardinality.
- A random variable maps an outcome of an experiment into a real number.
- Random variables are denoted by upper case letters: X, Y

Discrete Random Variables

Definition

- A **discrete random variable** is a *real-valued function* whose domain is a sample space *S* having finite or countably infinite cardinality.
- A random variable maps an outcome of an experiment into a real number.
- Random variables are denoted by upper case letters: X, Y
- The range of a random variable (i.e., the set of values it can assume) often has far fewer elements than the underlying sample space, because
- many outcomes often map to one real number.

Probability Overview

Keep in mind the following similarities and differences between a *probability function* and a *random variable*:

Probability Function	Random Variable
maps sets into real numbers	maps sets into real numbers
domain is the power set	domain is a sample space
of a sample space	
only takes values in $[0,1]$	can take any real value,
	positive or negative
must be consistent with	assignment of real numbers
Kolmogorov axioms	is arbitrary

A probability density function maps a random variable into a real number in the interval [0, 1].

A probability density function maps a random variable into a real number in the interval [0, 1].

Definition:

The **probability density function** or pdf of a random variable X, $p_X(k)$ is defined by

 $p_X(k) = P(s \in S \mid X(s) = k)$

A **probability density function** maps a random variable into a real number in the interval [0, 1].

Definition:

The **probability density function** or pdf of a random variable X, $p_X(k)$ is defined by

$$p_X(k) = P(s \in S \mid X(s) = k)$$

Usually the simpler notation which omits explicit reference to \boldsymbol{s} and \boldsymbol{S} is used,

 $p_X(k) = P(X = k)$

A **probability density function** maps a random variable into a real number in the interval [0, 1].

Definition:

The **probability density function** or pdf of a random variable X, $p_X(k)$ is defined by

$$p_X(k) = P(s \in S \mid X(s) = k)$$

Usually the simpler notation which omits explicit reference to s and S is used,

$$p_X(k) = P(X = k)$$

In other words, the probability density function for a discrete random variable maps each value the random variable can assume into the probability that it assumes that value.

Every discrete random variable X has an associated probability density function (pdf).

Every discrete random variable X has an associated probability density function (pdf).

The value of the pdf is defined to be zero for any value of k that is not in the range of X.

Two fair dice are rolled. The sample space (the set of possible outcomes) is a set of ordered pairs:

 $S = \{(x, y) \mid x, y \in \{1, 2, 3, 4, 5, 6\}\}$

Two fair dice are rolled. The sample space (the set of possible outcomes) is a set of ordered pairs:

$$S = \{(x, y) \mid x, y \in \{1, 2, 3, 4, 5, 6\}\}$$

The 36 elements of the sample space S are:

(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

Two fair dice are rolled. The sample space (the set of possible outcomes) is a set of ordered pairs:

$$S = \{(x, y) \mid x, y \in \{1, 2, 3, 4, 5, 6\}\}$$

nts.

The 36 elements of the sample space S are:

(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)			
(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)			
(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)			
(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)			
(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)			
(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)			
There are $2^{36} = 68,719,476,736$ possible even								

The usual choice for a probability function on S is:

$$P(s) = \frac{1}{36}, \quad s \in S$$

This is equivalent to the statement the 36 possible outcomes are equally likely.

The usual choice for a probability function on S is:

$$P(s) = \frac{1}{36}, \quad s \in S$$

This is equivalent to the statement the 36 possible outcomes are equally likely.

For event E (E being an arbitrary subset of S) that contains more than one outcome, simply assign

$$P(E) = \frac{n(E)}{36}$$

where n(E) is the cardinality of E.

You should convince yourself that this probability function satisfies the first three Kolmogorov axioms.

We may proceed to define a random variable X on S, the set of outcomes, by the formula

 $X = u + v \quad \text{for} \quad (u, v) \in S = \{(u, v) \mid u, v \in \{1, 2, 3, 4, 5, 6\}\}$

We may proceed to define a random variable X on S, the set of outcomes, by the formula

$$X = u + v \quad \text{for} \quad (u, v) \in S = \{(u, v) \mid u, v \in \{1, 2, 3, 4, 5, 6\}\}$$

The range of the random variable X contains 11 elements:

$$X \in \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

which is a considerably simpler set than either the sample space or its power set.

A probability density function $p_X(k)$ can be defined for X, with

 $p_X(k) = P(X = k), \quad k \in \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

A probability density function $p_X(k)$ can be defined for X, with

 $p_X(k) = P(X = k), \quad k \in \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

By counting the number of outcomes that produce each value of k for X, we can assign specific values to $p_X(k)$:

$$p_X(k) = P(X = k) = \begin{cases} 1/36 & \text{if} \quad k = 2 \text{ or } k = 12\\ 2/36 & \text{if} \quad k = 3 \text{ or } k = 11\\ 3/36 & \text{if} \quad k = 4 \text{ or } k = 10\\ 4/36 & \text{if} \quad k = 5 \text{ or } k = 9\\ 5/36 & \text{if} \quad k = 6 \text{ or } k = 8\\ 6/36 & \text{if} \quad k = 7 \end{cases}$$

Suppose an experiment consists of tossing a fair coin three times. The sample space contains 8 possible outcomes:

 $S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$

Suppose an experiment consists of tossing a fair coin three times. The sample space contains 8 possible outcomes:

 $S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$

As in the previous example, it is usual to define the probability function P on S so that the outcomes are equally likely.

Then P(s) = 1/8 for any element *s* of the sample space *S*, and for an arbitrary subset *E* of the power set of *S* (that is, an arbitrary event *E*), define P(E) to be the cardinality of *E* divided by 8:

$$P(E) = \frac{n(E)}{8}$$

Suppose an experiment consists of tossing a fair coin three times. The sample space contains 8 possible outcomes:

 $S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$

As in the previous example, it is usual to define the probability function P on S so that the outcomes are equally likely.

Then P(s) = 1/8 for any element *s* of the sample space *S*, and for an arbitrary subset *E* of the power set of *S* (that is, an arbitrary event *E*), define P(E) to be the cardinality of *E* divided by 8:

$$P(E) = \frac{n(E)}{8}$$

Once again, you can verify that *P* satisfies the first 3 Kolmogorov ax-

ioms.

Define a random variable X on S as follows:

X = Number of heads obtained in three tosses

Define a random variable X on S as follows:

X = Number of heads obtained in three tosses

The range of *X* is then $\{0, 1, 2, 3\}$. By counting the outcomes with 0, 1, 2, and 3 heads and using *P* as defined above, we can construct a probability density function $p_X(k)$ for *X*:

$$p_X(k) = P(X = k) = \begin{cases} 1/8 & \text{if} \quad X = 0\\ 3/8 & \text{if} \quad X = 1\\ 3/8 & \text{if} \quad X = 2\\ 1/8 & \text{if} \quad X = 3 \end{cases}$$

We will show that in general if an experiment consists of n independent Bernoulli trials with probability of success p and X is the number of successes, the probability density of X can be written as:

$$p_X(k) = P(X = k) = {\binom{n}{k}} p^k (1-p)^{1-k}, \quad k = 0, 1, \dots, n$$

We will show that in general if an experiment consists of n independent Bernoulli trials with probability of success p and X is the number of successes, the probability density of X can be written as:

$$p_X(k) = P(X = k) = \binom{n}{k} p^k (1-p)^{1-k}, \quad k = 0, 1, \dots, n$$

It is easy to verify that these probabilities add to 1 because

$$\sum_{k=0}^{n} p_X(k) = \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{1-k}$$

is just the expansion of $(p + (1 - p))^n$, and (p + (1 - p)) = 1 so this is 1^n .