Name:

1) Random variable X and Y have joint density function:

$$f(x,y) = \begin{cases} a \cdot (x^2y + 2xy^2) & \text{if } 0 \le x \le 1, \ 0 \le y \le 2\\ 0 & \text{elsewhere} \end{cases}$$

a) Find the value of a that makes f a valid joint density function.

b) Find the joint cumulative distribution function ${\cal F}(x,y)$

c) Find marginal density function of $x,\,f_x(x)$

d) Find marginal density function of $y,\,f_y(y)$

d) Find the expected value and variance of X, E(X) and V(X)

e) Find the expected value and variance of $Y,\, E(Y)$ and V(Y)

f) Find the covariance of X and Y, Cov(X, Y)

g) Find the conditional density $f_{\boldsymbol{x}|\boldsymbol{y}}(\boldsymbol{x})$ of \boldsymbol{X} given \boldsymbol{Y}

h) Find the conditional density $f_{y \mid x}(y)$ of Y given X

2) A random variable Y has density function

$$f(y) = \begin{cases} a \cdot e^{-(2x+y)} & \text{if } x, y \in [0,\infty) \\ 0 & \text{elsewhere} \end{cases}$$

a) Find the value of a that makes f a valid joint density function.

b) Find the joint cumulative distribution function F(x, y)

c) Find marginal density function of $x, f_x(x)$

d) Find marginal density function of $y,\,f_y(y)$

d) Find the expected value and variance of X, E(X) and V(X)

e) Find the expected value and variance of Y, E(Y) and V(Y)

f) Find the covariance of X and Y, $\operatorname{Cov}(X,Y)$

g) Find the conditional density $f_{x|y}(x)$ of X given Y

h) Find the conditional density $f_{y \mid x}(y)$ of
 Y given X

3) A random vector $Y = \{Y_1, Y_2, \ldots, Y_n\}$ consists of *n* independent, identically distributed random variables Y_i , where each Y_i has a beta distribution,

$$f(y_i) = \left[\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}\right] y_i^{\alpha - 1} (1 - y_i)^{\beta - 1}, \quad y_i \in (0, 1), \quad i = 1, \dots, n$$

and α and β are positive constants common to all y_i .

a) Find the joint density function of the random vector Y.

b) Suppose \overline{y} is the mean of the Y_i ,

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Use Theorem 5.12 to find the mean and variance of \overline{y} . (hint: $a_1 = a_2 = \cdots = a_n = 1/n$)