Margin of Error for Proportions

Gene Quinn

Margin of Error

An interval estimate for a population proportion p is often reported not as a confidence interval, but as a margin of error.

Margin of Error

An interval estimate for a population proportion p is often reported not as a confidence interval, but as a margin of error.

Definition: The margin of error for an estimate \hat{p} of a population proportion is defined to be $1 / 2$ the width of the widest possible 95% confidence interval for a sample size of n.

The margin of error is usually quoted as a percentage.

Margin of Error

Suppose a series of n independent Bernoulli trials with unknown probability of success p produces k successes.

As we have seen, an approximate 95% confidence interval for p is given by:

$$
\left(\frac{k}{n}-1.96 \sqrt{\frac{\frac{k}{n}\left(1-\frac{k}{n}\right)}{n}}, \quad \frac{k}{n}+1.96 \sqrt{\frac{\frac{k}{n}\left(1-\frac{k}{n}\right)}{n}}\right)
$$

Margin of Error

If $[L, U]$ is the 95% confidence interval for p, half the width of the interval is:
$\frac{U-L}{2}=\left(\frac{k}{n}+1.96 \sqrt{\frac{\frac{k}{n}\left(1-\frac{k}{n}\right)}{n}}\right)-\left(\frac{k}{n}-1.96 \sqrt{\frac{\frac{k}{n}\left(1-\frac{k}{n}\right)}{n}}\right)$

Margin of Error

If $[L, U]$ is the 95% confidence interval for p, half the width of the interval is:
$\frac{U-L}{2}=\left(\frac{k}{n}+1.96 \sqrt{\frac{\frac{k}{n}\left(1-\frac{k}{n}\right)}{n}}\right)-\left(\frac{k}{n}-1.96 \sqrt{\frac{\frac{k}{n}\left(1-\frac{k}{n}\right)}{n}}\right)$
Collecting terms and writing \hat{p} for k / n, this becomes

$$
\frac{U-L}{2}=3.92 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

Margin of Error
It is easy to verify that for $0 \leq \hat{p} \leq 1$,

$$
\hat{p}(1-\hat{p}) \quad \text { is maximized when } \quad \hat{p}=\frac{1}{2}
$$

Margin of Error

It is easy to verify that for $0 \leq \hat{p} \leq 1$,

$$
\hat{p}(1-\hat{p}) \quad \text { is maximized when } \quad \hat{p}=\frac{1}{2}
$$

Taking the derivative with respect to \hat{p} gives

$$
\frac{d}{d \hat{p}}(\hat{p}(1-\hat{p}))=\frac{d}{d \hat{p}}\left(\hat{p}-\hat{p}^{2}\right)=1-2 \hat{p}
$$

Margin of Error

It is easy to verify that for $0 \leq \hat{p} \leq 1$,

$$
\hat{p}(1-\hat{p}) \quad \text { is maximized when } \quad \hat{p}=\frac{1}{2}
$$

Taking the derivative with respect to \hat{p} gives

$$
\frac{d}{d \hat{p}}(\hat{p}(1-\hat{p}))=\frac{d}{d \hat{p}}\left(\hat{p}-\hat{p}^{2}\right)=1-2 \hat{p}
$$

It is clear that the derivative is zero when $\hat{p}=1 / 2$ and that this represents a maximum because the second derivative is $-2<0$.

Margin of Error

We can obtain the widest possible 95% confidence interval for p by substituting $1 / 4$ for $\hat{p}(1-\hat{p})$:

$$
\max \frac{U-L}{2}=\max \left(3.92 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)=3.92 \sqrt{\frac{1}{4 n}}
$$

Margin of Error

We can obtain the widest possible 95% confidence interval for p by substituting $1 / 4$ for $\hat{p}(1-\hat{p})$:

$$
\max \frac{U-L}{2}=\max \left(3.92 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)=3.92 \sqrt{\frac{1}{4 n}}
$$

The margin of error is half the width of the widest possible 95% confidence interval, or

$$
\frac{1}{2}\left(3.92 \sqrt{\frac{1}{4 n}}\right)=\frac{1.96}{2 \sqrt{n}}
$$

Margin of Error

Example: A poll of 1,000 houseolds finds 47 with an unemployed adult family member.

What is the margin of error for the poll?

Margin of Error

Example: A poll of 1,000 houseolds finds 47 with an unemployed adult family member.

What is the margin of error for the poll?
Actually the only information we need is that $n=1000$. Then

$$
\text { margin of error }=\frac{1.96}{2 \sqrt{1000}}=.03099
$$

The margin of error is 3.1%.

Margin of Error

Example: A survey of 450 college students is taken to determine the proportion that have taken a statistics course.

What is the margin of error for the poll?

Margin of Error

Example: A survey of 450 college students is taken to determine the proportion that have taken a statistics course.

What is the margin of error for the poll?
Using the fact that $n=450$,

$$
\text { margin of error }=\frac{1.96}{2 \sqrt{450}}=.0462
$$

The margin of error is 4.6%.

