MA396 In-Class Exercise - Group I

Names:

a)
b)
c)
d)
e)
f)

A quadratic form is a construct of the form $x^{\prime} A x$ where x is a vector and A is a matrix.

For an arbitrary 2×2 matrix A,

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

the determinant of A, denoted by $|A|$, is the scalar quantity $a d-b c$.
The inverse of a 2×2 matrix A with $|A| \neq 0$ is:

$$
A^{-1}=\frac{1}{|A|}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

(If $|A|=0, A$ does not have an inverse). If X is a vector of n random variables $\left(X_{1}, \ldots, X_{n}\right)$ with expected value $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ and variance-covariance matrix V, then X is said to have the multivariate normal distribution if the joint density function of X is:

$$
f_{X}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{(\sqrt{2 \pi})^{n} \sqrt{|V|}} \exp \left(-\frac{1}{2}(x-\mu)^{\prime} V^{-1}(x-\mu)\right)
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$, provided $|V| \neq 0$. The notation $X \sim N(\mu, V)$ is used to indicate that X has a multivariate normal distribution with mean vector μ and variance-covariance matrix V.

In this situation, the (multivariate) moment-generating function $M_{X}(t)$ of X is:

$$
M_{X}(t)=\exp \left(t^{\prime} \mu+\frac{1}{2} t^{\prime} V t\right)
$$

where $\left.t=t_{1}, \ldots, t_{n}\right)$ is a vector of parameters.

1) Find A^{-1} and the value of the quadratic form $u^{\prime} A u$ if

$$
u=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

2) Suppose $X=\left(X_{1}, X_{2}\right) \sim N(\mu, A)$ where $\mu=(1,0)$ is the vector of means. What is the multivariate density function of X ?
3) What is the moment generating function of X ?
4) If b is a vector of constants, the mean of $b^{\prime} X$ is $b^{\prime} \mu$, and the variance of $b^{\prime} X$ is $b^{\prime} V b$. Find the mean and variance of $Y=X_{1}-X_{2}$.

MA396 In-Class Exercise - Group II

Names:

a)
b)
c)
d)
e)
f)

A quadratic form is a construct of the form $x^{\prime} A x$ where x is a vector and A is a matrix.

For an arbitrary 2×2 matrix A,

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

the determinant of A, denoted by $|A|$, is the scalar quantity $a d-b c$.
The inverse of a 2×2 matrix A with $|A| \neq 0$ is:

$$
A^{-1}=\frac{1}{|A|}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

(If $|A|=0, A$ does not have an inverse). If X is a vector of n random variables $\left(X_{1}, \ldots, X_{n}\right)$ with expected value $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ and variance-covariance matrix V, then X is said to have the multivariate normal distribution if the joint density function of X is:

$$
f_{X}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{(\sqrt{2 \pi})^{n} \sqrt{|V|}} \exp \left(-\frac{1}{2}(x-\mu)^{\prime} V^{-1}(x-\mu)\right)
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$, provided $|V| \neq 0$. The notation $X \sim N(\mu, V)$ is used to indicate that X has a multivariate normal distribution with mean vector μ and variance-covariance matrix V.

In this situation, the (multivariate) moment-generating function $M_{X}(t)$ of X is:

$$
M_{X}(t)=\exp \left(t^{\prime} \mu+\frac{1}{2} t^{\prime} V t\right)
$$

where $\left.t=t_{1}, \ldots, t_{n}\right)$ is a vector of parameters.

1) Find A^{-1} and the value of the quadratic form $u^{\prime} A u$ if

$$
u=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

2) Suppose $X=\left(X_{1}, X_{2}\right) \sim N(\mu, A)$ where $\mu=(0,1)$ is the vector of means. What is the multivariate density function of X ?
3) What is the moment generating function of X ?
4) If b is a vector of constants, the mean of $b^{\prime} X$ is $b^{\prime} \mu$, and the variance of $b^{\prime} X$ is $b^{\prime} V b$. Find the mean and variance of $Y=X_{1}-X_{2}$.

MA396 In-Class Exercise - Group III

Names:

a)
b)
c)
d)
e)
f)

A quadratic form is a construct of the form $x^{\prime} A x$ where x is a vector and A is a matrix.

For an arbitrary 2×2 matrix A,

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

the determinant of A, denoted by $|A|$, is the scalar quantity $a d-b c$.
The inverse of a 2×2 matrix A with $|A| \neq 0$ is:

$$
A^{-1}=\frac{1}{|A|}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

(If $|A|=0, A$ does not have an inverse). If X is a vector of n random variables $\left(X_{1}, \ldots, X_{n}\right)$ with expected value $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ and variance-covariance matrix V, then X is said to have the multivariate normal distribution if the joint density function of X is:

$$
f_{X}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{(\sqrt{2 \pi})^{n} \sqrt{|V|}} \exp \left(-\frac{1}{2}(x-\mu)^{\prime} V^{-1}(x-\mu)\right)
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$, provided $|V| \neq 0$. The notation $X \sim N(\mu, V)$ is used to indicate that X has a multivariate normal distribution with mean vector μ and variance-covariance matrix V.

In this situation, the (multivariate) moment-generating function $M_{X}(t)$ of X is:

$$
M_{X}(t)=\exp \left(t^{\prime} \mu+\frac{1}{2} t^{\prime} V t\right)
$$

where $\left.t=t_{1}, \ldots, t_{n}\right)$ is a vector of parameters.

1) Find A^{-1} and the value of the quadratic form $u^{\prime} A u$ if

$$
u=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

2) Suppose $X=\left(X_{1}, X_{2}\right) \sim N(\mu, A)$ where $\mu=(1,1)$ is the vector of means. What is the multivariate density function of X ?
3) What is the moment generating function of X ?
4) If b is a vector of constants, the mean of $b^{\prime} X$ is $b^{\prime} \mu$, and the variance of $b^{\prime} X$ is $b^{\prime} V b$. Find the mean and variance of $Y=X_{1}-X_{2}$.

MA396 In-Class Exercise - Group IV

Names:

a)
b)
c)
d)
e)
f)

A quadratic form is a construct of the form $x^{\prime} A x$ where x is a vector and A is a matrix.

For an arbitrary 2×2 matrix A,

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

the determinant of A, denoted by $|A|$, is the scalar quantity $a d-b c$.
The inverse of a 2×2 matrix A with $|A| \neq 0$ is:

$$
A^{-1}=\frac{1}{|A|}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

(If $|A|=0, A$ does not have an inverse). If X is a vector of n random variables $\left(X_{1}, \ldots, X_{n}\right)$ with expected value $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ and variance-covariance matrix V, then X is said to have the multivariate normal distribution if the joint density function of X is:

$$
f_{X}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{(\sqrt{2 \pi})^{n} \sqrt{|V|}} \exp \left(-\frac{1}{2}(x-\mu)^{\prime} V^{-1}(x-\mu)\right)
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$, provided $|V| \neq 0$. The notation $X \sim N(\mu, V)$ is used to indicate that X has a multivariate normal distribution with mean vector μ and variance-covariance matrix V.

In this situation, the (multivariate) moment-generating function $M_{X}(t)$ of X is:

$$
M_{X}(t)=\exp \left(t^{\prime} \mu+\frac{1}{2} t^{\prime} V t\right)
$$

where $\left.t=t_{1}, \ldots, t_{n}\right)$ is a vector of parameters.

1) Find A^{-1} and the value of the quadratic form $u^{\prime} A u$ if

$$
u=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

2) Suppose $X=\left(X_{1}, X_{2}\right) \sim N(\mu, A)$ where $\mu=(0,0)$ is the vector of means. What is the multivariate density function of X ?
3) What is the moment generating function of X ?
4) If b is a vector of constants, the mean of $b^{\prime} X$ is $b^{\prime} \mu$, and the variance of $b^{\prime} X$ is $b^{\prime} V b$. Find the mean and variance of $Y=X_{1}+X_{2}$.

MA396 In-Class Exercise - Group V

Names:

a)
b)
c)
d)
e)
f)

A quadratic form is a construct of the form $x^{\prime} A x$ where x is a vector and A is a matrix.

For an arbitrary 2×2 matrix A,

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

the determinant of A, denoted by $|A|$, is the scalar quantity $a d-b c$.
The inverse of a 2×2 matrix A with $|A| \neq 0$ is:

$$
A^{-1}=\frac{1}{|A|}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

(If $|A|=0, A$ does not have an inverse). If X is a vector of n random variables $\left(X_{1}, \ldots, X_{n}\right)$ with expected value $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ and variance-covariance matrix V, then X is said to have the multivariate normal distribution if the joint density function of X is:

$$
f_{X}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{(\sqrt{2 \pi})^{n} \sqrt{|V|}} \exp \left(-\frac{1}{2}(x-\mu)^{\prime} V^{-1}(x-\mu)\right)
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$, provided $|V| \neq 0$. The notation $X \sim N(\mu, V)$ is used to indicate that X has a multivariate normal distribution with mean vector μ and variance-covariance matrix V.

In this situation, the (multivariate) moment-generating function $M_{X}(t)$ of X is:

$$
M_{X}(t)=\exp \left(t^{\prime} \mu+\frac{1}{2} t^{\prime} V t\right)
$$

where $\left.t=t_{1}, \ldots, t_{n}\right)$ is a vector of parameters.

1) Find A^{-1} and the value of the quadratic form $u^{\prime} A u$ if

$$
u=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
$$

2) Suppose $X=\left(X_{1}, X_{2}\right) \sim N(\mu, A)$ where $\mu=(1,1)$ is the vector of means. What is the multivariate density function of X ?
3) What is the moment generating function of X ?
4) If b is a vector of constants, the mean of $b^{\prime} X$ is $b^{\prime} \mu$, and the variance of $b^{\prime} X$ is $b^{\prime} V b$. Find the mean and variance of $Y=X_{1}-2 X_{2}$.

MA396 In-Class Exercise - Group VI
Names:
a)
b)
c)
d)
e)
f)

A quadratic form is a construct of the form $x^{\prime} A x$ where x is a vector and A is a matrix.

For an arbitrary 2×2 matrix A,

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

the determinant of A, denoted by $|A|$, is the scalar quantity $a d-b c$.
The inverse of a 2×2 matrix A with $|A| \neq 0$ is:

$$
A^{-1}=\frac{1}{|A|}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

(If $|A|=0, A$ does not have an inverse). If X is a vector of n random variables $\left(X_{1}, \ldots, X_{n}\right)$ with expected value $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ and variance-covariance matrix V, then X is said to have the multivariate normal distribution if the joint density function of X is:

$$
f_{X}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{(\sqrt{2 \pi})^{n} \sqrt{|V|}} \exp \left(-\frac{1}{2}(x-\mu)^{\prime} V^{-1}(x-\mu)\right)
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$, provided $|V| \neq 0$. The notation $X \sim N(\mu, V)$ is used to indicate that X has a multivariate normal distribution with mean vector μ and variance-covariance matrix V.

In this situation, the (multivariate) moment-generating function $M_{X}(t)$ of X is:

$$
M_{X}(t)=\exp \left(t^{\prime} \mu+\frac{1}{2} t^{\prime} V t\right)
$$

where $\left.t=t_{1}, \ldots, t_{n}\right)$ is a vector of parameters.

1) Find A^{-1} and the value of the quadratic form $u^{\prime} A u$ if

$$
u=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]
$$

2) Suppose $X=\left(X_{1}, X_{2}\right) \sim N(\mu, A)$ where $\mu=(0,1)$ is the vector of means. What is the multivariate density function of X ?
3) What is the moment generating function of X ?
4) If b is a vector of constants, the mean of $b^{\prime} X$ is $b^{\prime} \mu$, and the variance of $b^{\prime} X$ is $b^{\prime} V b$. Find the mean and variance of $Y=2 X_{1}-X_{2}$.
