MA396 In-Class Exercise - Group I

Names:

a)
b)
c)
d)
e)
f)

1) Two random variables X and Y have joint density

$$
f_{X Y}(x, y)=\left\{\begin{array}{rr}
x(y+1) / 3 & (x, y) \in[0,2] \times[0,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Determine the support S of the joint density,

$$
S=\left\{(x, y): f_{X Y}(x, y)>0\right\}
$$

b) Show that $f_{X Y}$ is a valid pdf (i.e, that it's nonnegative on S and the volume over S is 1).
c) Find the marginal density of $X, f_{X}(x)$, and verify that it is a pdf.
d) Find the marginal density of $Y, f_{Y}(y)$, and verify that it is a pdf.
e) Find $P(X<0.5$ and $\quad Y<0.5)$.
f) Find $P(X<Y)$.
g) Find $P(X<1)$
h) Are the random variables X and Y independent? (i.e., does $f_{X Y}=$ $f_{X} \cdot f_{Y}$?)

MA396 In-Class Exercise - Group II

Names:

a)
b)
c)
d)
e)
f)

1) Two random variables X and Y have joint density

$$
f_{X Y}(x, y)=\left\{\begin{array}{rr}
x y / 4 & (x, y) \in[0,2] \times[0,2] \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Determine the support S of the joint density,

$$
S=\left\{(x, y): f_{X Y}(x, y)>0\right\}
$$

b) Show that $f_{X Y}$ is a valid pdf (i.e, that it's nonnegative on S and the volume over S is 1).
c) Find the marginal density of $X, f_{X}(x)$, and verify that it is a pdf.
d) Find the marginal density of $Y, f_{Y}(y)$, and verify that it is a pdf.
e) Find $P(X<0.5$ and $\quad Y<0.5)$.
f) Find $P(X<Y)$.
g) Find $P(X<1)$
h) Are the random variables X and Y independent? (i.e., does $f_{X Y}=$ $f_{X} \cdot f_{Y}$?)

MA396 In-Class Exercise - Group III

Names:

a)
b)
c)
d)
e)
f)

1) Two random variables X and Y have joint density

$$
f_{X Y}(x, y)=\left\{\begin{array}{rr}
(x+2) y / 5 & (x, y) \in[0,1] \times[0,2] \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Determine the support S of the joint density,

$$
S=\left\{(x, y): f_{X Y}(x, y)>0\right\}
$$

b) Show that $f_{X Y}$ is a valid pdf (i.e, that it's nonnegative on S and the volume over S is 1).
c) Find the marginal density of $X, f_{X}(x)$, and verify that it is a pdf.
d) Find the marginal density of $Y, f_{Y}(y)$, and verify that it is a pdf.
e) Find $P(X<0.5$ and $\quad Y<0.5)$.
f) Find $P(X<Y)$.
g) Find $P(X<1)$
h) Are the random variables X and Y independent? (i.e., does $f_{X Y}=$ $f_{X} \cdot f_{Y}$?)

MA396 In-Class Exercise - Group IV

Names:

a)
b)
c)
d)
e)
f)

1) Two random variables X and Y have joint density

$$
f_{X Y}(x, y)=\left\{\begin{array}{rr}
(x+y) / 3 & (x, y) \in[0,2] \times[0,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Determine the support S of the joint density,

$$
S=\left\{(x, y): f_{X Y}(x, y)>0\right\}
$$

b) Show that $f_{X Y}$ is a valid pdf (i.e, that it's nonnegative on S and the volume over S is 1).
c) Find the marginal density of $X, f_{X}(x)$, and verify that it is a pdf.
d) Find the marginal density of $Y, f_{Y}(y)$, and verify that it is a pdf.
e) Find $P(X<0.5$ and $\quad Y<0.5)$.
f) Find $P(X<Y)$.
g) Find $P(X<1)$
h) Are the random variables X and Y independent? (i.e., does $f_{X Y}=$ $f_{X} \cdot f_{Y}$?)

MA396 In-Class Exercise - Group V

Names:

a)
b)
c)
d)
e)
f)

1) Two random variables X and Y have joint density

$$
f_{X Y}(x, y)=\left\{\begin{array}{rr}
x^{2} y^{2} / 9 & (x, y) \in[0,1] \times[0,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Determine the support S of the joint density,

$$
S=\left\{(x, y): f_{X Y}(x, y)>0\right\}
$$

b) Show that $f_{X Y}$ is a valid pdf (i.e, that it's nonnegative on S and the volume over S is 1).
c) Find the marginal density of $X, f_{X}(x)$, and verify that it is a pdf.
d) Find the marginal density of $Y, f_{Y}(y)$, and verify that it is a pdf.
e) Find $P(X<0.5$ and $\quad Y<0.5)$.
f) Find $P(X<Y)$.
g) Find $P(X<1)$
h) Are the random variables X and Y independent? (i.e., does $f_{X Y}=$ $f_{X} \cdot f_{Y}$?)

MA396 In-Class Exercise - Group VI
Names:
a)
b)
c)
d)
e)
f)

1) Two random variables X and Y have joint density

$$
f_{X Y}(x, y)=\left\{\begin{array}{rr}
6 x^{2} y & (x, y) \in[0,1] \times[0,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Determine the support S of the joint density,

$$
S=\left\{(x, y): f_{X Y}(x, y)>0\right\}
$$

b) Show that $f_{X Y}$ is a valid pdf (i.e, that it's nonnegative on S and the volume over S is 1).
c) Find the marginal density of $X, f_{X}(x)$, and verify that it is a pdf.
d) Find the marginal density of $Y, f_{Y}(y)$, and verify that it is a pdf.
e) Find $P(X<0.5$ and $Y<0.5)$.
f) Find $P(X<Y)$.
g) Find $P(X<1)$
h) Are the random variables X and Y independent? (i.e., does $f_{X Y}=$ $f_{X} \cdot f_{Y}$?)

