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Overview
In this case study we will focus on the problem of estimating
the parameter θ of an exponential distribution.
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Overview
In this case study we will focus on the problem of estimating
the parameter θ of an exponential distribution.

In the process, we will:

Derive the maximum likelihood estimator θ̂mle for θ.

Derive the method of moments estimator for θ̂mom for θ.

Show that they are the same: θ̂mle = θ̂mom = θ̂

Derive the mean and variance of θ̂

Show that θ̂ is efficient for θ (it achieves the Cramer-Rao
lower bound)
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The Expnential Distribution
We will find it expedient to write the pdf of the exponential
distribution in the following form:

fX(x; θ) =
1

θ
exp

(

−
x

θ

)

x ∈ (0,∞)
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The Expnential Distribution
We will find it expedient to write the pdf of the exponential
distribution in the following form:

fX(x; θ) =
1

θ
exp

(

−
x

θ

)

x ∈ (0,∞)

As it suits our purpose we will treat f as a function of x
alone or as a function of x and θ.
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The Expnential Distribution
We will find it expedient to write the pdf of the exponential
distribution in the following form:

fX(x; θ) =
1

θ
exp

(

−
x

θ

)

x ∈ (0,∞)

As it suits our purpose we will treat f as a function of x
alone or as a function of x and θ.

We assume at the outset that we have a random sample of
size n,

x = {x1, . . . , xn}

from the exponential population under study and wish to
estimate the parameter θ.
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Method of Moments Estimate
We obtain the method of moments estimate for θ by
equating the expected value of x,

E(x) =

∫

∞

0
x · f(x; θ) dx = θ

to the first sample moment,

x =
1

n

n
∑

i=1

xi
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Method of Moments Estimate
The resulting equation is:

θ =
1

n

n
∑

i=1

xi
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Method of Moments Estimate
The resulting equation is:

θ =
1

n

n
∑

i=1

xi

We obtain the method of moments estimate for θ by solving
this equation for θ and defining θ̂mom to be the result.
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Method of Moments Estimate
The resulting equation is:

θ =
1

n

n
∑

i=1

xi

We obtain the method of moments estimate for θ by solving
this equation for θ and defining θ̂mom to be the result.

Of course in this case there is nothing to solve because
E(x) = θ, so all we have to do is declare that

θ̂mom = x =
1

n

n
∑

i=1

xi
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Maximum Likelihood Estimate
The maximum likelihood estimate for θ is the value of θ that
maximizes the likelihood function of the sample.

Recall that the likelihood function of the sample is obtained
as the product of the density function values for each xi,
considered as a function of θ:

L(θ) =

n
∏

i=1

f(xi; θ) =

n
∏

i=1

exp
(

−xi

θ

)

θ
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Maximum Likelihood Estimate
The maximum likelihood estimate for θ is the value of θ that
maximizes the likelihood function of the sample.

Recall that the likelihood function of the sample is obtained
as the product of the density function values for each xi,
considered as a function of θ:

L(θ) =

n
∏

i=1

f(xi; θ) =

n
∏

i=1

exp
(

−xi

θ

)

θ

=

(

1

θn

)

exp

(

−

∑

xi

θ

)
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Maximum Likelihood Estimate
To find the value of θ that maximizes L(θ), we differentiate

L(θ) =

(

1

θn

)

exp

(

−

∑

xi

θ

)

with respect to θ and set the result equal to zero.
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Maximum Likelihood Estimate
To find the value of θ that maximizes L(θ), we differentiate

L(θ) =

(

1

θn

)

exp

(

−

∑

xi

θ

)

with respect to θ and set the result equal to zero.

After some simplification, the derivative is

dL(θ)

dθ
= − exp

(

−

∑

xi

θ

)

θ−(n+2)

(

−
n
∑

i=1

xi + nθ

)
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Maximum Likelihood Estimate
For positive values of θ,

dL(θ)

dθ
= − exp

(

−

∑

xi

θ

)

θ−(n+2)

(

−

n
∑

i=1

xi + nθ

)

can only be zero if the third factor is zero,

−
n
∑

i=1

xi + nθ = 0
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Maximum Likelihood Estimate
For positive values of θ,

dL(θ)

dθ
= − exp

(

−

∑

xi

θ

)

θ−(n+2)

(

−

n
∑

i=1

xi + nθ

)

can only be zero if the third factor is zero,

−
n
∑

i=1

xi + nθ = 0

Solving this equation for θ gives the maximum likelihood
estimate,

θ̂mle =

∑

xi

n
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Properties of the Estimator
Since the method of moments and maximum likelihood
estimates are the same, we will dispense with the
distinction and simply refer to

θ̂ =

∑

xi

n
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Properties of the Estimator
Since the method of moments and maximum likelihood
estimates are the same, we will dispense with the
distinction and simply refer to

θ̂ =

∑

xi

n

We now address the properties of θ̂.

In particular, we would like to know:

is θ̂ unbiased?

is θ̂ efficient for θ?
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Properties of the Estimator

is θ̂ unbiased?

is θ̂ efficient for θ?

Recall that θ̂ is unbiased if

E(θ̂) = θ
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Properties of the Estimator

is θ̂ unbiased?

is θ̂ efficient for θ?

Recall that θ̂ is unbiased if

E(θ̂) = θ

If θ̂ is unbiased, it is efficient for θ if Var(θ̂ ) is equal to the
Cramer-Rao Lower Bound.

Both questions require us to evaluate the moments of θ̂.
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Properties of the Estimator
How do we find the expected value and variance of

θ̂ =

∑

xi

n
?
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Properties of the Estimator
How do we find the expected value and variance of

θ̂ =

∑

xi

n
?

One approach is to make use of the fact that the xis are
independently distributed with common density function

f(xi, θ) =
1

θ
exp

(

−
xi

θ

)
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Properties of the Estimator
Here is an overview of the approach:

First, find the moment-generating function Mxi
(t) of each xi.
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Properties of the Estimator
Here is an overview of the approach:

First, find the moment-generating function Mxi
(t) of each xi.

Next, make use of the theorem that says the
moment-generating function of xi/n is Mxi

(t/n)
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Properties of the Estimator
Here is an overview of the approach:

First, find the moment-generating function Mxi
(t) of each xi.

Next, make use of the theorem that says the
moment-generating function of xi/n is Mxi

(t/n)

Finally, make use of the theorem that says the
moment-generating function of the sum of independently
distributed random variables is the product of their
individual mgf’s.
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Properties of the Estimator
Here is an overview of the approach:

First, find the moment-generating function Mxi
(t) of each xi.

Next, make use of the theorem that says the
moment-generating function of xi/n is Mxi

(t/n)

Finally, make use of the theorem that says the
moment-generating function of the sum of independently
distributed random variables is the product of their
individual mgf’s.

The final result is that the moment-generating function of θ̂
is

M
θ̂
(t) =

n
∏

i=1

Mxi
(t/n)
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Properties of the Estimator
Now we find the moment-generating function for xi, Mxi

(t),
by evaluating the integral

Mxi
(t) =

∫

∞

0
etxi f(xi; θ) dxi =

∫

∞

0
etxi

1

θ
exp

(

−
xi

θ

)

dxi

Estimation Case Study: The Exponential Distribution – p.13/23



Properties of the Estimator
Now we find the moment-generating function for xi, Mxi

(t),
by evaluating the integral

Mxi
(t) =

∫

∞

0
etxi f(xi; θ) dxi =

∫

∞

0
etxi

1

θ
exp

(

−
xi

θ

)

dxi

The result is:

Mxi
(t) =

1

1 − tθ
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Properties of the Estimator
Now we use a theorem to find the moment-generating
function for xi/n,

Mxi/n(t) = Mxi

(

t

n

)

=
1

1 − tθ
n

Estimation Case Study: The Exponential Distribution – p.14/23



Properties of the Estimator
Now we use a theorem to find the moment-generating
function for xi/n,

Mxi/n(t) = Mxi

(

t

n

)

=
1

1 − tθ
n

Finally, since the xi are independently distributed and

θ̂ =
1

n

n
∑

i=1

xi =
n
∑

i=1

xi

n

we can use the theorem that says the moment-generating
function of the sum will be the product of the
moment-generating functions of the individual terms.
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Properties of the Estimator
So the final result is

M
θ̂
(t) =

n
∏

i=1

Mxi/n(t) =
n
∏

i=1

Mxi

(

t

n

)

=
n
∏

i=1

1

1 − tθ
n

=

(

1

1 − tθ
n

)n
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Properties of the Estimator

To find E(θ̂), we differentiate M
θ̂
(t) with respect to t

dM
θ̂
(t)

dt
=

d

dt

(

1

1 − tθ
n

)n

=

(

n
n−tθ

)n
nθ

n − tθ
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Properties of the Estimator

To find E(θ̂), we differentiate M
θ̂
(t) with respect to t

dM
θ̂
(t)

dt
=

d

dt

(

1

1 − tθ
n

)n

=

(

n
n−tθ

)n
nθ

n − tθ

Now evaluate the result at t = 0 to obtain E(θ̂):

E(θ̂) =
dMθ̂(t)

dt

∣

∣

∣

∣

t=0

=

(

n
n−0·θ

)n
nθ

n − 0 · θ
=

(1)nnθ

n
= θ
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Properties of the Estimator

To find E(θ̂), we differentiate M
θ̂
(t) with respect to t

dM
θ̂
(t)

dt
=

d

dt

(

1

1 − tθ
n

)n

=

(

n
n−tθ

)n
nθ

n − tθ

Now evaluate the result at t = 0 to obtain E(θ̂):

E(θ̂) =
dMθ̂(t)

dt

∣

∣

∣

∣

t=0

=

(

n
n−0·θ

)n
nθ

n − 0 · θ
=

(1)nnθ

n
= θ

This establishes that θ̂ is an unbiased estimator of θ:

E(θ̂) = E
[∑

xi

n

]

= θ
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Properties of the Estimator

To find E(θ̂2), we differentiate M
θ̂
(t) twice with respect to t

and evaluate the result at t = 0:

d2Mθ̂(t)

dt2
=

d2

dt2

(

1

1 − tθ
n

)n

=

(

n
n−tθ

)n
θ2n(n + 1)

(n − tθ)2
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Properties of the Estimator

To find E(θ̂2), we differentiate M
θ̂
(t) twice with respect to t

and evaluate the result at t = 0:

d2Mθ̂(t)

dt2
=

d2

dt2

(

1

1 − tθ
n

)n

=

(

n
n−tθ

)n
θ2n(n + 1)

(n − tθ)2

Now evaluate the result at t = 0 to obtain E(θ̂2):

E(θ̂2) =
d2Mθ̂(t)

dt2

∣

∣

∣

∣

∣

t=0

=

(

n
n−0·θ

)n
θ2n(n + 1)

(n − 0 · θ)2
=

n + 1

n
θ2
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Properties of the Estimator

Finally we calculate Var(θ̂) as

Var(θ̂) = E(θ̂2) −
[

E(θ̂)
]2

=

(

n + 1

n

)

θ2 − [θ]2 =
θ2

n
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Properties of the Estimator

Finally we calculate Var(θ̂) as

Var(θ̂) = E(θ̂2) −
[

E(θ̂)
]2

=

(

n + 1

n

)

θ2 − [θ]2 =
θ2

n

All that remains is to determine whether Var(θ̂) equals the
Cramer-Rao lower bound for the variance of an unbiased
estimator for θ.
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Properties of the Estimator

Finally we calculate Var(θ̂) as

Var(θ̂) = E(θ̂2) −
[

E(θ̂)
]2

=

(

n + 1

n

)

θ2 − [θ]2 =
θ2

n

All that remains is to determine whether Var(θ̂) equals the
Cramer-Rao lower bound for the variance of an unbiased
estimator for θ.

If it does, we will say that θ̂ is an efficient estimator for the
parameter θ.
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Cramer-Rao Inequality
To determine the Cramer-Rao lower bound for the variance
of an unbiased estimator for θ, we can either evaluate

{

nE

[

(

∂ ln fX(x; θ)

∂θ

)2
]}

−1

or
{

−nE
[

∂2 ln fX(x; θ)

∂θ2

]}−1
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Cramer-Rao Inequality
To determine the Cramer-Rao lower bound for the variance
of an unbiased estimator for θ, we can either evaluate

{

nE

[

(

∂ ln fX(x; θ)

∂θ

)2
]}

−1

or
{

−nE
[

∂2 ln fX(x; θ)

∂θ2

]}−1

Either way, we should get the same result.
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Cramer-Rao Inequality
Since

f(x; θ) =
1

θ
exp

(

−
x

θ

)

on substitution the second form of the lower bound
becomes

{

−nE
[

∂2

∂θ2
ln

(

1

θ
exp

(

−
x

θ

)

)]}−1
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Cramer-Rao Inequality
Since

f(x; θ) =
1

θ
exp

(

−
x

θ

)

on substitution the second form of the lower bound
becomes

{

−nE
[

∂2

∂θ2
ln

(

1

θ
exp

(

−
x

θ

)

)]}−1

The second order partial derivative in square brackets is

∂2

∂θ2
ln

(

1

θ
exp

(

−
x

θ

)

)

=
θ − 2x

θ3
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Cramer-Rao Inequality
The expected value of this quantity is

E
(

θ − 2x

θ3

)

=
θ − 2E(x)

θ3
=

θ − 2θ

θ3
= −

1

θ2
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Cramer-Rao Inequality
The expected value of this quantity is

E
(

θ − 2x

θ3

)

=
θ − 2E(x)

θ3
=

θ − 2θ

θ3
= −

1

θ2

on substitution the expression for the Cramer-Rao lower
bound becomes

{

−nE
[

θ − 2x

θ3

]}

−1

=

{

(−n)

(

−
1

θ2

)}

−1

=
θ2

n
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Cramer-Rao Inequality
Now having established that

Var(θ̂) = Var
(∑

xi

n

)

=
θ2

n

together with the fact that, by the Cramer-Rao inequality
any unbiased estimator for θ has

Var(θ̂) ≥
θ2

n

we conclude that

θ̂ =
1

n

n
∑

i=1

xi

is an efficient estimator for θ.
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Cramer-Rao Inequality
In other words, if we consider all possible unbiased
estimators for θ,

θ̂ =
1

n

n
∑

i=1

xi

has the smallest possible variance.
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