
1) Suppose Y = (Y1, Y2, Y3, Y4) is a vector of four independent, identi-
cally distributed random variables each with mean µ and variance σ2.
For each of the following estimators of µ, find the mean, variance, bias,
and mean square error.
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which can be written as
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Since E(Ŷ1) = µ, the bias is zero and therefore the MSE is the same

as V (Ŷ1).

b) This time

Ŷ2 =
Y1 + 2Y2 + Y3

4
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Again E(Ŷ2) = µ so the bias is zero and therefore the MSE is the same

as V (Ŷ2).

c)

Ŷ3 = Y =
Y1 + Y2 + Y3 + Y4

4

so

E(Ŷ3) = t′µy =
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V (Ŷ3) = σ2
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E(Ŷ2) = µ so the bias is zero and again the MSE is the same as V (Ŷ2).

d)

Ŷ4 =
Y1 − Y2 + Y3 − Y4

4

so this time

E(Ŷ4) = t′µy =
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The bias is

E(Ŷ2) − µ = −µ

and the MSE is

MSE(Ŷ1) = V (Ŷ1) + (Bias)2 =
σ2

4
+ µ2

2) Suppose (Y1, . . . , Yn) is a random sample size n from a population

with known mean µ. If θ̂2 is an unbiased estimate of E(Y 2) and θ̂3 is
an unbiased estimate of E(Y 3), find an unbiased estimate of the third
central moment of the underlying distribution.

The phrase random sample implies that the individual Yi are indepen-
dent and identically distributed (IID), and their common distribution
is the ”underlying distribution” that we are trying to find the third
central moment of.

Let Y be a univariate random variable having the same distribution
as each of the Yi (this notation is a bit confusing because we have used
Y to represent the random vector (Y1, . . . , Yn) elsewhere).

We are given two estimators θ̂2 and θ̂3 with the property that

E(θ̂2) = E(Y 2) and E(Ŷ3) = E(Y 3)

By definition, the third central moment of Y is

µ3 = E((Y − µ)3) = E(Y 3
− 3µY 2 + 3µ2Y − µ3)

= E(Y 3) − 3µE(Y 2) + 3µ2E(Y ) − µ3

= E(Y 3) − 3µE(Y 2) + 2µ3

The assumption is that we know µ, so we can treat it as a constant.
Define

µ̂3 = θ̂3 + 3µθ̂2 + 2µ3

so

E(µ̂3) = E(θ̂3) + 3µE(θ̂2) + 2µ3 = E(Y 3) + 3µE(Y 2) + 2µ3 = µ3



3) Suppose (Y1, . . . , Yn) is a random sample size n from a population
with density function

f(y) = α ·
yα−1

θα
0 ≤ y ≤ θ

Let θ̂ = max(Y1, . . . , Yn) be an estimator of θ.

a) Find the density function of θ̂

The density function of the kth order statistic is given by the formula:

g(k)(y) =
n!

(k − 1)!(n − k)!
[F (y)]k−1[1 − F (y)]n−k

· f(y), 0 ≤ y ≤ θ

where

F (y) =

∫ y

0

f(t)dt =

∫ y

0

α ·
tα−1

θα
dt =

yα

θα
, 0 ≤ y ≤ θ

The maximum is the order statistic with k = n, so on substitution we
have

g(n)(y) =
n!

(n − 1)!(n − n)!

[

yα

θα

]n−1 [

1 −
yα

θα

]0

·
αyα−1

θα
, 0 ≤ y ≤ θ

which on simpification becomes

g(n)(y) =
nαynα−1

θnα
, 0 ≤ y ≤ θ

Identifying θ̂ with y, we can rewrite this as a density function for θ̂:

f(θ̂) =
nαθ̂nα−1

θnα
, 0 ≤ θ̂ ≤ θ

b) Find the expected value, variance, and MSE of θ̂

This is an easy function to integrate, so we can directly evaluate the
moments:

E(θ̂) =

∫ θ

0

θ̂ · f(θ̂)dθ̂ =

∫ θ

0

θ̂ ·
nαθ̂nα−1

θnα
dθ̂ = θ

(

nα

nα + 1

)

E(θ̂2) =

∫ θ

0

θ̂2
· f(θ̂)dθ̂ =

∫ θ

0

θ̂2
·
nαθ̂nα−1

θnα
dθ̂ = θ2

(

nα

nα + 2

)



The bias is:

Bias(θ̂) = E(θ̂) − θ = θ − θ

(

nα

nα + 1

)

=
θ

nα + 1

Note that as the sample size increases, that is, as n → ∞, the bias tends
to zero. An estimator with this property is said to be asymptotically

unbiased.

The variance of θ̂ is

V (θ̂) = E(θ̂2) − [E(θ̂)]2 =
θ2

nα + 2
−

(

nαθ

nα + 1

)2

=
nα · θ2

(nα + 2)(nα + 1)2

And finally the MSE of θ̂ is

MSE(θ̂) = V (θ̂) + Bias(θ̂)2

=
θ2

nα + 2
−

(

nαθ

nα + 1

)2

+

(

θ

nα + 1

)2

=
2θ2

(nα + 1)(nα + 2)

4) Suppose (Y1, . . . , Y9) is a sample of size n = 9 from a uniform distri-

bution on [0, 1]. Let θ̂ be the sample median (i.e., the 5th order statistic
Y(5))

a) Show that θ̂ is an unbiased estimator for the population mean.

The density function of the kth order statistic is given by the formula:

g(k)(y) =
n!

(k − 1)!(n − k)!
[F (y)]k−1[1 − F (y)]n−k

· f(y), 0 ≤ y ≤ θ

where

f(y) = 1 and F (y) =

∫ y

0

f(t)dt =

∫ y

0

1 · dt = y, 0 ≤ y ≤ 1

In this case n = 9 and k = 5, so on substitution we have

g(5)(y) =
9!

(5 − 1)!(9 − 5)!
y5−1(1 − y)9−5

· 1, 0 ≤ y ≤ 1

which on simpification becomes

g(5)(y) =
9!

4!4!
y4(1 − y)4, 0 ≤ y ≤ 1

and in terms of θ̂,

f(θ̂) =
9!

4!4!
θ̂4(1 − θ̂)4, 0 ≤ θ̂ ≤ 1



We recognize this as a beta distribution with parameters α = β = 5,
so the expected value is

E(θ̂) =
α

α + β
=

1

2

so θ̂ is an unbiased estimator for the mean of the underlying population.

b) Find the variance and MSE of θ̂

From previous results (back cover of the text) we know

V (θ̂) =
αβ

(α + β)2(α + θ + 1)
=

25

1100

Because θ̂ is unbiased, the variance and the MSE are the same.

5) A very common problem is estimating the difference between the
means of two populations. Suppose

Y1 = (Y11, Y12, . . . , Y1n1
)

is a random sample of size n1 from a population with mean µ1 and
variance σ2

1, and

Y2 = (Y21, Y22, . . . , Y2n2
)

is an independent random sample of size n2 from a population with
mean µ2 and variance σ2

2 .

a) Show that θ̂ = Y 1 − Y 2, the difference between the sample means,
is an unbiased estimator for the difference between the two population
means, µ1 − µ2.

We don’t have the density function of the Yi variables, but we can
use the results for linear combinations of random variables that hold
regardless of the distribution (as long as the means and variances are
finite). In terms of the matrix formulation of Theorem 5.12, let Y be
the (n1 + n2) × 1 vector
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The (n1 + n2) × 1 vector of coefficients for the linear combination is:

t =

[

t1
t2

]

=



















1/n1
...

1/n1

−1/n2
...

−1/n2



















The (n1 + n2) × 1 vector of means is:

µ =
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and finally the (n1 + n2) × (n1 + n2) (diagonal) variance-covariance
matrix is:

V =



















σ2
1

. . .
σ2

1

σ2
2

. . .

σ2
2



















All of the covariances (the off-diagonal terms) are zero because we
assume that the Yij are mutually independent.

Now using the matrix formulas,

E(t′Y ) = t′µ =

n1
∑

1

µ1

n1

+

n2
∑

1

−
µ2

n2

= n1 ·
µ1

n1

− n2 ·
µ2

n2

= µ1 − µ2

b) Show that the variance of θ̂ is

V (θ̂) =
σ2

1

n1
+

σ2
2

n2

The variance of θ̂ is

V (θ̂) = V (t′Y ) = t′V t



We can write t′V as the 1 × (n1 + n2) vector:
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