Name:

a)

1) Suppose $Y = (Y_1, Y_2, Y_3, Y_4)$ is a vector of four independent, identically distributed random variables each with mean μ and variance σ^2 . For each of the following estimators of μ , find the mean, variance, bias, and mean square error.

$$\hat{Y}_1 = \frac{Y_1 + 3Y_3}{4}$$

b)
$$\hat{Y}_2 = \frac{Y_1 + 2Y_2 + Y_3}{4}$$

c)
$$\hat{Y}_3 = \overline{Y} = \frac{Y_1 + Y_2 + Y_3 + Y_4}{4}$$

d)
$$\hat{Y}_4 = \frac{Y_1 - Y_2 + Y_3 - Y_4}{4}$$

2) Suppose (Y_1, \ldots, Y_n) is a random sample size *n* from a population with known mean μ . If $\hat{\theta}_2$ is an unbiased estimate of $E(Y^2)$ and $\hat{\theta}_3$ is an unbiased estimate of $E(Y^3)$, find an unbiased estimate of the third central moment of the underlying distribution.

3) Suppose (Y_1, \ldots, Y_n) is a random sample size *n* from a population with density function

$$f(y) = \alpha \cdot \frac{y^{\alpha - 1}}{\theta^{\alpha}} \quad 0 \le y \le \theta$$

Let $\hat{\theta} = \max(Y_1, \ldots, Y_n)$ be an estimator of θ .

a) Find the density function of $\hat{\theta}$.

b) Find the expected value, variance, and MSE of $\hat{\theta}$

4) Suppose (Y_1, \ldots, Y_9) is a sample of size n = 9 from a uniform distribution on [0, 1]. Let $\hat{\theta}$ be the sample median (i.e., the 5th order statistic $Y_{(5)}$)

a) Show that $\hat{\theta}$ is an unbiased estimator for the population mean.

b) Find the variance and MSE of $\hat{\theta}$

5) A very common problem is estimating the difference between the means of two populations. Suppose

$$Y_1 = (Y_{11}, Y_{12}, \dots, Y_{1n_1})$$

is a random sample of size n_1 from a population with mean μ_1 and variance σ_1^2 , and

$$Y_2 = (Y_{21}, Y_{22}, \dots, Y_{2n_2})$$

is an independent random sample of size n_2 from a population with mean μ_2 and variance σ_2^2 .

a) Show that $\hat{\theta} = \overline{Y}_1 - \overline{Y}_2$, the difference between the sample means, is an unbiased estimator for the difference between the two population means, $\mu_1 - \mu_2$.

b) Show that the variance of $\hat{\theta}$ is

$$V(\hat{\theta}) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

(Hint: you can use Theorem 5.12, or the equivalent matrix formulation. Consider the $1 \times (n_1 + n_2)$ vector

$$Y' = (Y'_1 Y'_2) = (Y_{11}, Y_{12}, \dots, Y_{1n_1}, Y_{21}, Y_{22}, \dots, Y_{2n_2})$$

and the $1 \times (n_1 + n_2)$ vectors

$$t' = \left(\frac{1}{n_1}, \dots, \frac{1}{n_1}, -\frac{1}{n_2}, \dots, -\frac{1}{n_2}\right)$$

and

$$\mu' = (\mu_1, \ldots, \mu_1, \mu_2, \ldots, \mu_2)$$

with V being a diagonal matrix of dimension $(n_1+n_2) \times (n_1+n_2)$ having its first n_1 diagonal elements equal to σ_1^2 and the next n_2 diagonal elements equal to σ_2^2 . Then $\hat{\theta} = t'Y$, $E(\hat{\theta}) = t'\mu$, and $V(\hat{\theta}) = t'Vt$.)