## Name:

1) Suppose $Y=\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$ is a vector of four independent, identically distributed random variables each with mean $\mu$ and variance $\sigma^{2}$. For each of the following estimators of $\mu$, find the mean, variance, bias, and mean square error.
a)

$$
\hat{Y}_{1}=\frac{Y_{1}+3 Y_{3}}{4}
$$

b)

$$
\hat{Y}_{2}=\frac{Y_{1}+2 Y_{2}+Y_{3}}{4}
$$

c)

$$
\hat{Y}_{3}=\bar{Y}=\frac{Y_{1}+Y_{2}+Y_{3}+Y_{4}}{4}
$$

d)

$$
\hat{Y}_{4}=\frac{Y_{1}-Y_{2}+Y_{3}-Y_{4}}{4}
$$

2) Suppose $\left(Y_{1}, \ldots, Y_{n}\right)$ is a random sample size $n$ from a population with known mean $\mu$. If $\hat{\theta_{2}}$ is an unbiased estimate of $E\left(Y^{2}\right)$ and $\hat{\theta_{3}}$ is an unbiased estimate of $E\left(Y^{3}\right)$, find an unbiased estimate of the third central moment of the underlying distribution.
3) Suppose $\left(Y_{1}, \ldots, Y_{n}\right)$ is a random sample size $n$ from a population with density function

$$
f(y)=\alpha \cdot \frac{y^{\alpha-1}}{\theta^{\alpha}} \quad 0 \leq y \leq \theta
$$

Let $\hat{\theta}=\max \left(Y_{1}, \ldots, Y_{n}\right)$ be an estimator of $\theta$.
a) Find the density function of $\hat{\theta}$.
b) Find the expected value, variance, and MSE of $\hat{\theta}$
4) Suppose $\left(Y_{1}, \ldots, Y_{9}\right)$ is a sample of size $n=9$ from a uniform distribution on $[0,1]$. Let $\hat{\theta}$ be the sample median (i.e., the $5^{\text {th }}$ order statistic $\left.Y_{(5)}\right)$
a) Show that $\hat{\theta}$ is an unbiased estimator for the population mean.
b) Find the variance and MSE of $\hat{\theta}$
5) A very common problem is estimating the difference between the means of two populations. Suppose

$$
Y_{1}=\left(Y_{11}, Y_{12}, \ldots, Y_{1 n_{1}}\right)
$$

is a random sample of size $n_{1}$ from a population with mean $\mu_{1}$ and variance $\sigma_{1}^{2}$, and

$$
Y_{2}=\left(Y_{21}, Y_{22}, \ldots, Y_{2 n_{2}}\right)
$$

is an independent random sample of size $n_{2}$ from a population with mean $\mu_{2}$ and variance $\sigma_{2}^{2}$.
a) Show that $\hat{\theta}=\bar{Y}_{1}-\bar{Y}_{2}$, the difference between the sample means, is an unbiased estimator for the difference between the two population means, $\mu_{1}-\mu_{2}$.
b) Show that the variance of $\hat{\theta}$ is

$$
V(\hat{\theta})=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}
$$

(Hint: you can use Theorem 5.12, or the equivalent matrix formulation. Consider the $1 \times\left(n_{1}+n_{2}\right)$ vector

$$
Y^{\prime}=\left(Y_{1}^{\prime} Y_{2}^{\prime}\right)=\left(Y_{11}, Y_{12}, \ldots, Y_{1 n_{1}}, Y_{21}, Y_{22}, \ldots, Y_{2 n_{2}}\right)
$$

and the $1 \times\left(n_{1}+n_{2}\right)$ vectors

$$
t^{\prime}=\left(\frac{1}{n_{1}}, \ldots, \frac{1}{n_{1}},-\frac{1}{n_{2}}, \ldots,-\frac{1}{n_{2}}\right)
$$

and

$$
\mu^{\prime}=\left(\mu_{1}, \ldots, \mu_{1}, \mu_{2}, \ldots, \mu_{2}\right)
$$

with $V$ being a diagonal matrix of dimension $\left(n_{1}+n_{2}\right) \times\left(n_{1}+n_{2}\right)$ having its first $n_{1}$ diagonal elements equal to $\sigma_{1}^{2}$ and the next $n_{2}$ diagonal elements equal to $\sigma_{2}^{2}$. Then $\hat{\theta}=t^{\prime} Y, E(\hat{\theta})=t^{\prime} \mu$, and $V(\hat{\theta})=t^{\prime} V t$.)

