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The Estimation Problem
A probability model generally assumes that experimental
outcomes follow a probability distribution.
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The Estimation Problem
A probability model generally assumes that experimental
outcomes follow a probability distribution.

Usually, these distributions involve one or more
parameters.

A complete specification of the probability distribution
involves these parameters.

The process of determining suitable values for these
parameters is called estimation and is a major topic in
statistics.
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The Estimation Problem
Example: Suppose an experiment has two possible
outcomes, success and failure.

Suppose we conduct 10 independent trials of the
experiment, and have reason to believe that the probability
of success p is the same on each trial.
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The Estimation Problem
Example: Suppose an experiment has two possible
outcomes, success and failure.

Suppose we conduct 10 independent trials of the
experiment, and have reason to believe that the probability
of success p is the same on each trial.

If we associate 1 with the outcome "success" and 0 with the
outcome "failure", we can state the probabilities associated
with these values as:

P (X = x) =

{

p if x = 1

1 − p if x = 0
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The Estimation Problem
Define a vector of outcomes for the 10 trials,

x = {x1, x2, . . . , x10}

Estimation – p.4/30



The Estimation Problem
Define a vector of outcomes for the 10 trials,

x = {x1, x2, . . . , x10}

One possible result of the 10 trials is the vector

x = {0, 1, 1, 0, 0, 0, 1, 0, 1, 0}
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The Estimation Problem
Define a vector of outcomes for the 10 trials,

x = {x1, x2, . . . , x10}

One possible result of the 10 trials is the vector

x = {0, 1, 1, 0, 0, 0, 1, 0, 1, 0}

We now address the problem of estimating the value of the
parameter p based on this data.
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Maximum Likelihood Estimation
One approach to this problem is the following:

For the estimate p̂ of the parameter p, choose the value that
maximizes the probability of obtaining the outcome that
actually occurred
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Maximum Likelihood Estimation
One approach to this problem is the following:

For the estimate p̂ of the parameter p, choose the value that
maximizes the probability of obtaining the outcome that
actually occurred

This approach is called the method of maximum likelihood.
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Maximum Likelihood Estimation
Define a vector of 10 random variables

X = {X1, X2, . . . , X10}
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Maximum Likelihood Estimation
Define a vector of 10 random variables

X = {X1, X2, . . . , X10}

Now define the likelihood function of the vector of
outcomes x as

L(p) =

10
∏

i=1

P (Xi = xi)
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Maximum Likelihood Estimation
Define a vector of 10 random variables

X = {X1, X2, . . . , X10}

Now define the likelihood function of the vector of
outcomes x as

L(p) =

10
∏

i=1

P (Xi = xi)

Note that the likelihood function depends on the vector of
outcomes and the parameter p.

Estimation – p.6/30



Maximum Likelihood
For the vector of outcomes:

x = {0, 1, 1, 0, 0, 0, 1, 0, 1, 0}

the likelihood function is:

L(p) = [P (X1 = 0)] [P (X2 = 1)] [P (X3 = 1)] · · · [P (X10 = 0)]
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Maximum Likelihood
For the vector of outcomes:

x = {0, 1, 1, 0, 0, 0, 1, 0, 1, 0}

the likelihood function is:

L(p) = [P (X1 = 0)] [P (X2 = 1)] [P (X3 = 1)] · · · [P (X10 = 0)]

Since P (Xi = 1) = p and P (Xi = 0) = 1 − p, L(p) is

(1 − p) · p · p · (1 − p) · (1 − p) · (1 − p) · p · (1 − p) · p · (1 − p)
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Maximum Likelihood
For the vector of outcomes:

x = {0, 1, 1, 0, 0, 0, 1, 0, 1, 0}

the likelihood function is:

L(p) = [P (X1 = 0)] [P (X2 = 1)] [P (X3 = 1)] · · · [P (X10 = 0)]

Since P (Xi = 1) = p and P (Xi = 0) = 1 − p, L(p) is

(1 − p) · p · p · (1 − p) · (1 − p) · (1 − p) · p · (1 − p) · p · (1 − p)

Or, collecting like factors,

L(p) = p4(1 − p)6
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Maximum Likelihood
The graph of L(p) for values of p between 0 and 1 is:
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Maximum Likelihood
It appears that L(p) is maximized for some value of p near
0.4:
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Maximum Likelihood
To determine the value of p that maximizes L(p), first
evaluate

d

dp
p4(1 − p)6
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Maximum Likelihood
To determine the value of p that maximizes L(p), first
evaluate

d

dp
p4(1 − p)6

Using the product rule, this is

4p3(1 − p)6 + 6p4(1 − p)5(−1)
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Maximum Likelihood
To determine the value of p that maximizes L(p), first
evaluate

d

dp
p4(1 − p)6

Using the product rule, this is

4p3(1 − p)6 + 6p4(1 − p)5(−1)

Collecting factors, and equating the result to zero, we get

p3(1 − p)5 [4(1 − p) − 6p] = p3(1 − p)5 (4 − 10p) = 0
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Maximum Likelihood
For p ∈ (0, 1), the equation

p3(1 − p)5 (4 − 10p) = 0

is satisfied when

4 − 10p = 0 so p =
4

10
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Maximum Likelihood
For p ∈ (0, 1), the equation

p3(1 − p)5 (4 − 10p) = 0

is satisfied when

4 − 10p = 0 so p =
4

10

So, the maximum likeklihood estimate of p is:

p̂ =
4

10
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Maximum Likelihood
We can generalize this result to a sequence of n trials that
produces k successes.

For 1 < k < n − 1, the likelihood function is maximized when

p(k−1)(1 − p)(n−k−1) (k − np) = 0

is satisfied when

k − np = 0 so p̂ =
k

n
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Maximum Likelihood
With the obvious extensions to include the cases k = 0 and
k = n, we have the maximum likelihood estimate

p̂ =
k

n
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Maximum Likelihood
With the obvious extensions to include the cases k = 0 and
k = n, we have the maximum likelihood estimate

p̂ =
k

n

Now we can state the following result:

If a series of n Bernoulli trials produces k successes, the
maximum likelihood estimate of the parameter p is

p̂ =
k

n
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Maximum Likelihood
Example 2: Exponential distribution

In this case, the density function is

f(x) = λe−λx
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Maximum Likelihood
Example 2: Exponential distribution

In this case, the density function is

f(x) = λe−λx

For a sample x = {x1, x2, . . . , xn}, the likelihood function is:

L(λ) =

n
∏

i=1

λe−λxi = λn exp

(

−λ

n
∑

i=1

xi

)

Estimation – p.14/30



Maximum Likelihood
The graph of L(λ) for values of λ is:
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Maximum Likelihood
Differentiating the likelihood function with respect to λ and
setting the result to zero, on solving the result for lambda we
have the maximum likelihood estimate

λ̂ =
n

∑

n

i=1 xi

for the parameter of the exponential distribution

Estimation – p.16/30



Maximum Likelihood
Differentiating the likelihood function with respect to λ and
setting the result to zero, on solving the result for lambda we
have the maximum likelihood estimate

λ̂ =
n

∑

n

i=1 xi

for the parameter of the exponential distribution
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Maximum Likelihood
Example 3: Geometric distribution

In this case, the density function is

f(x) = (1 − p)n−1p
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Maximum Likelihood
Example 3: Geometric distribution

In this case, the density function is

f(x) = (1 − p)n−1p

For a sample x = {x1, x2, . . . , xn}, the likelihood function is:

L(p) =
n
∏

i=1

(1 − p)xi−1p = (1 − p)
P

xi−npn

Estimation – p.17/30



Maximum Likelihood
The graph of L(p) for values of p is:
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Maximum Likelihood
Differentiating the likelihood function with respect to p and
setting the result to zero, on solving the result for p we have
the maximum likelihood estimate

p̂ =
n

∑

n

i=1 xi

for the parameter of the geometric distribution.
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Maximum Likelihood
Differentiating the likelihood function with respect to p and
setting the result to zero, on solving the result for p we have
the maximum likelihood estimate

p̂ =
n

∑

n

i=1 xi

for the parameter of the geometric distribution.
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Maximum Likelihood
Example 4: Poisson distribution

In this case, the density function is

f(x) =
λxe−λ

x!
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Maximum Likelihood
Example 4: Poisson distribution

In this case, the density function is

f(x) =
λxe−λ

x!

For a sample x = {x1, x2, . . . , xn}, the likelihood function is:

L(λ) =
n
∏

i=1

λxie−λ

xi!
=

λ
P

xie−nλ

∏

xi!
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Maximum Likelihood
The graph of L(λ) for values of λ is:
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Maximum Likelihood
Differentiating the likelihood function with respect to λ and
setting the result to zero, on solving the result for λ we have
the maximum likelihood estimate

p̂ =

∑

n

i=1 xi

n

for the parameter of the Poisson distribution.
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Maximum Likelihood
Differentiating the likelihood function with respect to λ and
setting the result to zero, on solving the result for λ we have
the maximum likelihood estimate

p̂ =

∑

n

i=1 xi

n

for the parameter of the Poisson distribution.
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Multiple Parameters
Many important distributions have more than one
parameter.

Recall that if a random variable X is normally distributed,
X ∼ N(µ, σ2), the density function is:

fX(x) =
1√
2πσ

exp

(

−1

2

(

x − µ

σ

)2
)
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Multiple Parameters

For a sample x = {x1, x2, . . . , xn} from a N(µ, σ2)
population, the likelihood function is:

L(µ, σ) =
n
∏

i=1

1√
2πσ

exp

(

−1

2

(

x − µ

σ

)2
)

=
1

(√
2πσ

)n exp

(

−1

2

n
∑

i=1

(

xi − µ

σ

)2
)
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Multiple Parameters
To maximize L(µ, σ), recall that we set up a system of
simultaneous equations in the partial derivatives with
respect to µ and σ,

∂L(µ, σ)

∂µ
= 0

∂L(µ, σ)

∂σ
= 0

Estimation – p.25/30



Multiple Parameters
To maximize L(µ, σ), recall that we set up a system of
simultaneous equations in the partial derivatives with
respect to µ and σ,

∂L(µ, σ)

∂µ
= 0

∂L(µ, σ)

∂σ
= 0

The complexity of this type of system is one of the
drawbacks of maximum likelihood estimation.
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Method of Moments
An alternative to the maximum likelihood technique for
estimating parameter values is the method of moments.
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Method of Moments
An alternative to the maximum likelihood technique for
estimating parameter values is the method of moments.

The idea is that in general, the (theoretical) moments of a
random variable X,

E(Xk) =

∫

∞

−∞

xkfX(x) dx

are functions of the unknown parameters.
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Method of Moments
If x = {x1, x2, . . . , xn} is a random sample from some
population, define the kth sample moment as:

1

n

n
∑

i=1

xk
i
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Method of Moments
If x = {x1, x2, . . . , xn} is a random sample from some
population, define the kth sample moment as:

1

n

n
∑

i=1

xk
i

The method of moments estimates are obtained by setting
the sample moments equal to the theoretical moments and
solving for the parameters.

E(Xk) =

∫

∞

−∞

xkfX(x) dx =
1

n

n
∑

i=1

xk

i
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Method of Moments
Example Using moment-generating functions, we have
seen that if x = {x1, x2, . . . , xn} is a random sample from a
N(µ, σ2) population, the sample mean has a normal
distribution with mean µ and variance σ2/n.

In this case, the (theoretical) first moment, E(X), is just µ.
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Method of Moments
Example Using moment-generating functions, we have
seen that if x = {x1, x2, . . . , xn} is a random sample from a
N(µ, σ2) population, the sample mean has a normal
distribution with mean µ and variance σ2/n.

In this case, the (theoretical) first moment, E(X), is just µ.

The method of moments estimate of µ is obtained from the
equation

E(X1) = µ =
1

n

n
∑

i=1

xi
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Method of Moments
So, for a random sample from a N(µ, σ2) population, the
method of moments extimate of µ is:

µ̂ =
1

n

n
∑

i=1

xk
i
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