More on Covariance

Gene Quinn

Variance-Covariance Matrix

Definition: The variance-covariance matrix for two jointly distributed random variables X_1, X_2 is the matrix V with:

- The i^{th} diagonal element is $\sigma_i^2 = Var(X_i)$
- The off diagonal elements are σ_{ij} , $i \neq j = Cov(X_i, X_j)$

Variance-Covariance Matrix

Definition: The variance-covariance matrix for two jointly distributed random variables X_1, X_2 is the matrix V with:

- The i^{th} diagonal element is $\sigma_i^2 = Var(X_i)$
- The off diagonal elements are σ_{ij} , $i \neq j = Cov(X_i, X_j)$

Variance-Covariance Matrix

Definition: The variance-covariance matrix for two jointly distributed random variables X_1, X_2 is the matrix V with:

- The i^{th} diagonal element is $\sigma_i^2 = Var(X_i)$
- The off diagonal elements are σ_{ij} , $i \neq j = Cov(X_i, X_j)$

For a bivariate distribution,

$$V = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}$$

Definition

For a trivariate distribution,

$$V = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_2^2 & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_3^2 \end{bmatrix}$$

Definition

For a trivariate distribution,

$$V = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_2^2 & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_3^2 \end{bmatrix}$$

With four variates,

$$V = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} & \sigma_{14} \\ \sigma_{12} & \sigma_2^2 & \sigma_{23} & \sigma_{24} \\ \sigma_{13} & \sigma_{23} & \sigma_3^2 & \sigma_{34} \\ \sigma_{14} & \sigma_{24} & \sigma_{34} & \sigma_4^2 \end{bmatrix}$$

Definition

If the variates are independent, all covariances are zero and V is diagonal:

$$V = \begin{bmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_3^2 \end{bmatrix}$$

A construct closely related to the covariance of two random variables is their **correlation**.

A construct closely related to the covariance of two random variables is their **correlation**.

Definition: If two random variables X_1 and X_2 have:

• covariance
$$Cov(X_1, X_2) = \sigma_{12}$$

• variances
$$Var(X_1) = \sigma_1^2$$
 and $Var(X_2) = \sigma_2^2$

the **correlation coefficient** of X_1 and X_2 , denoted by $\rho(X_1, X_2)$, is given by

$$\rho(X_1, X_2) = \frac{\operatorname{Cov}(X_1, X_2)}{\sigma_1 \sigma_2}$$

A construct closely related to the covariance of two random variables is their **correlation**.

Definition: If two random variables X_1 and X_2 have:

• covariance
$$Cov(X_1, X_2) = \sigma_{12}$$

• variances
$$Var(X_1) = \sigma_1^2$$
 and $Var(X_2) = \sigma_2^2$

the **correlation coefficient** of X_1 and X_2 , denoted by $\rho(X_1, X_2)$, is given by

$$\rho(X_1, X_2) = \frac{\operatorname{Cov}(X_1, X_2)}{\sigma_1 \sigma_2}$$

Note:
$$\sigma_1 = \sqrt{\sigma_1^2}$$
 and $\sigma_2 = \sqrt{\sigma_2^2}$

Some facts about correlation:

Some facts about correlation:

Correlation is the most commonly used measure of association between two random variables

Some facts about correlation:

Correlation is the most commonly used measure of association between two random variables

Correlation is a measure of the *linear* relationship between X_1 and X_2 .

It's possible for X_1 and X_2 to have a *nonlinear* relationship and still have $\rho_{12} = 0$. (Zero correlation implies only no **linear** relationship). Some facts about correlation:

Correlation is the most commonly used measure of association between two random variables

Correlation is a measure of the *linear* relationship between X_1 and X_2 .

It's possible for X_1 and X_2 to have a *nonlinear* relationship and still have $\rho_{12} = 0$. (Zero correlation implies only no **linear** relationship).

Correlations vary between -1 and 1. A positive correlation means that high values of X_1 tend to be associated with high values of X_2 .

Some facts about correlation:

Correlation is the most commonly used measure of association between two random variables

Correlation is a measure of the *linear* relationship between X_1 and X_2 .

It's possible for X_1 and X_2 to have a *nonlinear* relationship and still have $\rho_{12} = 0$. (Zero correlation implies only no **linear** relationship).

Correlations vary between -1 and 1. A positive correlation means that high values of X_1 tend to be associated with high values of X_2 .

A negative correlation means that high values of X_1 tend to be associated with *low* values of X_2 .

The Correlation Matrix

Definition: The **correlation matrix** for jointly distributed random variables X_1, X_2, \ldots, X_n is the matrix R with:

- i^{th} diagonal element 1
- off diagonal elements $\rho_{ij}, i \neq j = \frac{\text{Cov}(X_i, X_j)}{\sigma_i \sigma_j}$

The Correlation Matrix

Definition: The **correlation matrix** for jointly distributed random variables X_1, X_2, \ldots, X_n is the matrix R with:

• i^{th} diagonal element 1

• off diagonal elements
$$\rho_{ij}, i \neq j = \frac{\text{Cov}(X_i, X_j)}{\sigma_i \sigma_j}$$

For a bivariate distribution,

$$R = \begin{bmatrix} 1 & \rho_{12} \\ \rho_{12} & 1 \end{bmatrix}$$

The Variance and Correlation Matrices

The variance-covariance matrix and the correlation matrix are related in the following way:

Suppose $\vec{X} = (X_1, x_2, \dots, X_n)$ is a vector of random variables with variance-covariance matrix V. Let S be the diagonal matrix with i^{th} element equal to the *reciprocal* of

$$S = \begin{bmatrix} \frac{1}{\sqrt{\sigma_1^2}} & 0 & 0 & 0 & \cdots & 0\\ 0 & \frac{1}{\sqrt{\sigma_2^2}} & 0 & 0 & \cdots & 0\\ 0 & 0 & \frac{1}{\sqrt{\sigma_1^2}} & 0 & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & 0 & \cdots & \frac{1}{\sqrt{\sigma_n^2}} \end{bmatrix}$$

The Variance and Correlation Matrices

Then the variance matrix V and correlation matrix R satisfy:

SVS = R

Suppose \vec{X} is a vector of random variables and \vec{a} is a vector of weights.

Suppose \vec{X} is a vector of random variables and \vec{a} is a vector of weights.

The variance of the linear combination

 $\vec{a} \cdot \vec{X}$

is the quadratic form:

 $\vec{a}'V\vec{a}$

where a' is represents the (column) vector a written as a row vector.

Suppose $\vec{X} = \{X_1, X_2, X_3\}$ is a vector of random variables with variance matrix

$$V = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_2^2 & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_3^2 \end{bmatrix}$$

Find the variance of the linear combination $2X_1 - X_2 + X_3$

Suppose $\vec{X} = \{X_1, X_2, X_3\}$ is a vector of random variables with variance matrix

$$V = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_2^2 & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_3^2 \end{bmatrix}$$

Find the variance of the linear combination $2X_1 - X_2 + X_3$ In this case, $\vec{a} = \{2 - 11\}$, and the variance of the linear combination is the quadratic form:

$$\vec{a}'V\vec{a} = \begin{bmatrix} 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_2^2 & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_3^2 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

First carry out the multiplication of $\vec{a}'V$

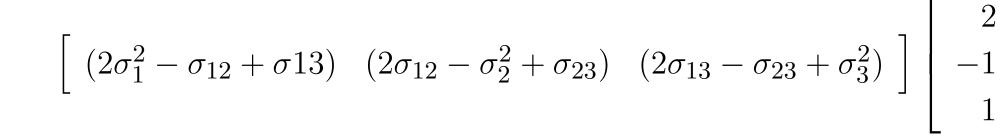
$$\vec{a}'V\vec{a} = \begin{bmatrix} 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_2^2 & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_3^2 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

First carry out the multiplication of $\vec{a}'V$

$$\vec{a}'V\vec{a} = \begin{bmatrix} 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_2^2 & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_3^2 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

$$\left[(2\sigma_1^2 - \sigma_{12} + \sigma_{13}) (2\sigma_{12} - \sigma_2^2 + \sigma_{23}) (2\sigma_{13} - \sigma_{23} + \sigma_3^2) \right] - 1$$

2



$$\begin{bmatrix} (2\sigma_1^2 - \sigma_{12} + \sigma_{13}) & (2\sigma_{12} - \sigma_2^2 + \sigma_{23}) & (2\sigma_{13} - \sigma_{23} + \sigma_3^2) \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\vec{a}'V\vec{a} = (2)(2\sigma_1^2 - \sigma_{12} + \sigma_{13}) + (-1)(2\sigma_{12} - \sigma_2^2 + \sigma_{23}) + (1)(2\sigma_{13} - \sigma_{23} + \sigma_3^2)$$

2

$$\begin{bmatrix} (2\sigma_1^2 - \sigma_{12} + \sigma_{13}) & (2\sigma_{12} - \sigma_2^2 + \sigma_{23}) & (2\sigma_{13} - \sigma_{23} + \sigma_3^2) \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$

$$\vec{a}'V\vec{a} = (2)(2\sigma_1^2 - \sigma_{12} + \sigma_{13}) + (-1)(2\sigma_{12} - \sigma_2^2 + \sigma_{23}) + (1)(2\sigma_{13} - \sigma_{23} + \sigma_3^2)$$

 $\vec{a}'V\vec{a} = 4\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - 4\sigma_{12} + 4\sigma_{13} - 2\sigma_{23}$

2