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For a bivariate distribution,
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For a trivariate distribution,
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For a trivariate distribution,
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Definition

If the variates are independent, all covariances are zero
and V' is diagonal:




Correlation

A construct closely related to the covariance of two random
variables is their correlation .
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A construct closely related to the covariance of two random
variables is their correlation .

Definition : If two random variables X; and X5 have:
# covariance Cov(Xy, Xo) = 019

® variances Var(X;) = o? andVar(X3) = o5

the correlation coefficient of X; and X5, denoted by
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A construct closely related to the covariance of two random
variables is their correlation .

Definition : If two random variables X; and X5 have:
# covariance Cov(Xy, Xo) = 019

® variances Var(X;) = o? andVar(X3) = o5

the correlation coefficient of X; and X5, denoted by
p(X1, X2), Is given by
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Note: o1 = U% and o9 = 0%




Correlation

Some facts about correlation:
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and still have p15 = 0. (Zero correlation implies only no
linear relationship).
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Correlation

Some facts about correlation:

Correlation is the most commonly used measure of
association between two random variables

Correlation is a measure of the linear relationship between
X1 and Xo.

It's possible for X; and X5 to have a nonlinear relationship
and still have p15 = 0. (Zero correlation implies only no
linear relationship).

Correlations vary between —1 and 1. A positive correlation
means that high values of X; tend to be associated with
high values of Xs.

A negative correlation means that high values of X; tend to
be associated with low values of X5.




The Correlation Matrix

Definition : The correlation matrix for jointly distributed
random variables X;, X, ..., X,, Is the matrix R with:

» " diagonal element 1
Cov(x;,X;)

0,0

» off diagonal elements p;;, i # 5 =




The Correlation Matrix

Definition : The correlation matrix for jointly distributed
random variables X;, X, ..., X,, Is the matrix R with:

» " diagonal element 1
Cov(x;,X;)

0,0

» off diagonal elements p;;, i # 5 =

For a bivariate distribution,
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The Variance and Correlation Matrices

The variance-covariance matrix and the correlation matrix
are related in the following way:

Suppose X = (X1, z9,...,X,) is a vector of random
variables with variance-covariance matrix V. Let S be the
diagonal matrix with it element equal to the reciprocal of
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The Variance and Correlation Matrice:

Then the variance matrix V' and correlation matrix R satisfy:

SVS = R
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Linear Combinations

Suppose X is a vector of random variables and @ is a vector
of weights.




Linear Combinations

Suppose X is a vector of random variables and @ is a vector
of weights.

The variance of the linear combination

a-X

IS the quadratic form:
ava

where d’ is represents the (column) vector a written as a
row vector.




Linear Combinations

Suppose X = {X1, X», X3} is a vector of random variables

with variance matrix
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Find the variance of the linear combination 2X; — X5 4+ X3




Linear Combinations

Suppose X = {X1, X», X3} is a vector of random variables

with variance matrix
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Find the variance of the linear combination 2X; — X5 4+ X3

In this case, @ = {2 — 11}, and the variance of the linear

combination is the quadratic form:
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Linear Combinations

First carry out the multiplication of @'V

FVa = [2 9 1}
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Linear Combinations

{(20%—012—#013) (2012—0%4—023) (2013—023%—05)}




Linear Combinations

[(20%—0124-0'13) (2012—0%4—023) (2013—023—#0‘%)} —1

dVa = (2)(201 — 012 + 013) + (=1)(2012 — 05 + 093)

—|—(1)(20‘13 — 093 + (7?2))
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Linear Combinations

[(20%—0124-0'13) (2012—0%4—023) (2013—023—#0‘%)} —1

dVa = (2)(201 — 012 + 013) + (=1)(2012 — 05 + 093)

—|—(1)(20‘13 — 093 + (7?2))

ava = 40% -+ (7% -+ 0?2) — 4019 + 4013 — 2093
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