More on Covariance

Gene Quinn

Variance-Covariance Matrix

Definition: The variance-covariance matrix for two jointly distributed random variables X_{1}, X_{2} is the matrix V with:

- The $i^{\text {th }}$ diagonal element is $\sigma_{i}^{2}=\operatorname{Var}\left(X_{i}\right)$
- The off diagonal elements are $\sigma_{i j}, i \neq j=\operatorname{Cov}\left(X_{i}, X_{j}\right)$

Variance-Covariance Matrix

Definition: The variance-covariance matrix for two jointly distributed random variables X_{1}, X_{2} is the matrix V with:

- The $i^{\text {th }}$ diagonal element is $\sigma_{i}^{2}=\operatorname{Var}\left(X_{i}\right)$
- The off diagonal elements are $\sigma_{i j}, i \neq j=\operatorname{Cov}\left(X_{i}, X_{j}\right)$

Variance-Covariance Matrix

Definition: The variance-covariance matrix for two jointly distributed random variables X_{1}, X_{2} is the matrix V with:

- The $i^{\text {th }}$ diagonal element is $\sigma_{i}^{2}=\operatorname{Var}\left(X_{i}\right)$
- The off diagonal elements are $\sigma_{i j}, i \neq j=\operatorname{Cov}\left(X_{i}, X_{j}\right)$

For a bivariate distribution,

$$
V=\left[\begin{array}{rr}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right]
$$

Definition

For a trivariate distribution,

$$
V=\left[\begin{array}{rrr}
\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{2}^{2} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{3}^{2}
\end{array}\right]
$$

Definition

For a trivariate distribution,

$$
V=\left[\begin{array}{rrr}
\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{2}^{2} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{3}^{2}
\end{array}\right]
$$

With four variates,

$$
V=\left[\begin{array}{rrrr}
\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} & \sigma_{14} \\
\sigma_{12} & \sigma_{2}^{2} & \sigma_{23} & \sigma_{24} \\
\sigma_{13} & \sigma_{23} & \sigma_{3}^{2} & \sigma_{34} \\
\sigma_{14} & \sigma_{24} & \sigma_{34} & \sigma_{4}^{2}
\end{array}\right]
$$

Definition

If the variates are independent, all covariances are zero and V is diagonal:

$$
V=\left[\begin{array}{rrr}
\sigma_{1}^{2} & 0 & 0 \\
0 & \sigma_{2}^{2} & 0 \\
0 & 0 & \sigma_{3}^{2}
\end{array}\right]
$$

Correlation

A construct closely related to the covariance of two random variables is their correlation.

Correlation

A construct closely related to the covariance of two random variables is their correlation.

Definition: If two random variables X_{1} and X_{2} have:

- covariance $\operatorname{Cov}\left(X_{1}, X_{2}\right)=\sigma_{12}$
- variances $\operatorname{Var}\left(X_{1}\right)=\sigma_{1}^{2}$ and $\operatorname{Var}\left(X_{2}\right)=\sigma_{2}^{2}$
the correlation coefficient of X_{1} and X_{2}, denoted by $\rho\left(X_{1}, X_{2}\right)$, is given by

$$
\rho\left(X_{1}, X_{2}\right)=\frac{\operatorname{Cov}\left(X_{1}, X_{2}\right)}{\sigma_{1} \sigma_{2}}
$$

Correlation

A construct closely related to the covariance of two random variables is their correlation.

Definition: If two random variables X_{1} and X_{2} have:

- covariance $\operatorname{Cov}\left(X_{1}, X_{2}\right)=\sigma_{12}$
- variances $\operatorname{Var}\left(X_{1}\right)=\sigma_{1}^{2}$ and $\operatorname{Var}\left(X_{2}\right)=\sigma_{2}^{2}$
the correlation coefficient of X_{1} and X_{2}, denoted by $\rho\left(X_{1}, X_{2}\right)$, is given by

$$
\rho\left(X_{1}, X_{2}\right)=\frac{\operatorname{Cov}\left(X_{1}, X_{2}\right)}{\sigma_{1} \sigma_{2}}
$$

Note: $\sigma_{1}=\sqrt{\sigma_{1}^{2}}$ and $\sigma_{2}=\sqrt{\sigma_{2}^{2}}$

Correlation

Some facts about correlation:

Correlation

Some facts about correlation:
Correlation is the most commonly used measure of association between two random variables

Correlation

Some facts about correlation:
Correlation is the most commonly used measure of association between two random variables

Correlation is a measure of the linear relationship between X_{1} and X_{2}.
It's possible for X_{1} and X_{2} to have a nonlinear relationship and still have $\rho_{12}=0$. (Zero correlation implies only no linear relationship).

Correlation

Some facts about correlation:
Correlation is the most commonly used measure of association between two random variables

Correlation is a measure of the linear relationship between X_{1} and X_{2}.
It's possible for X_{1} and X_{2} to have a nonlinear relationship and still have $\rho_{12}=0$. (Zero correlation implies only no linear relationship).

Correlations vary between -1 and 1. A positive correlation means that high values of X_{1} tend to be associated with high values of X_{2}.

Correlation

Some facts about correlation:
Correlation is the most commonly used measure of association between two random variables

Correlation is a measure of the linear relationship between X_{1} and X_{2}.
It's possible for X_{1} and X_{2} to have a nonlinear relationship and still have $\rho_{12}=0$. (Zero correlation implies only no linear relationship).

Correlations vary between -1 and 1. A positive correlation means that high values of X_{1} tend to be associated with high values of X_{2}.

A negative correlation means that high values of X_{1} tend to be associated with low values of X_{2}.

The Correlation Matrix

Definition: The correlation matrix for jointly distributed random variables $X_{1}, X_{2}, \ldots, X_{n}$ is the matrix R with:

- $i^{\text {th }}$ diagonal element 1
- off diagonal elements $\rho_{i j}, i \neq j=\frac{\operatorname{Cov}\left(X_{i}, X_{j}\right)}{\sigma_{i} \sigma_{j}}$

The Correlation Matrix

Definition: The correlation matrix for jointly distributed random variables $X_{1}, X_{2}, \ldots, X_{n}$ is the matrix R with:

- $i^{\text {th }}$ diagonal element 1
- off diagonal elements $\rho_{i j}, i \neq j=\frac{\operatorname{Cov}\left(X_{i}, X_{j}\right)}{\sigma_{i} \sigma_{j}}$

For a bivariate distribution,

$$
R=\left[\begin{array}{rr}
1 & \rho_{12} \\
\rho_{12} & 1
\end{array}\right]
$$

The Variance and Correlation Matrice

The variance-covariance matrix and the correlation matrix are related in the following way:

Suppose $\vec{X}=\left(X_{1}, x_{2}, \ldots, X_{n}\right)$ is a vector of random variables with variance-covariance matrix V. Let S be the diagonal matrix with $i^{\text {th }}$ element equal to the reciprocal of $\sqrt{\sigma_{i}^{2}}$

$$
S=\left[\begin{array}{rrrrrr}
\frac{1}{\sqrt{\sigma_{1}^{2}}} & 0 & 0 & 0 & \cdots & 0 \\
0 & \frac{1}{\sqrt{\sigma_{2}^{2}}} 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \frac{1}{\sqrt{\sigma_{1}^{2}}} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \frac{1}{\sqrt{\sigma_{n}^{2}}}
\end{array}\right]
$$

The Variance and Correlation Matrice

Then the variance matrix V and correlation matrix R satisfy:

$$
S V S=R
$$

Linear Combinations

Suppose \vec{X} is a vector of random variables and \vec{a} is a vector of weights.

Linear Combinations

Suppose \vec{X} is a vector of random variables and \vec{a} is a vector of weights.
The variance of the linear combination

$$
\vec{a} \cdot \vec{X}
$$

is the quadratic form:

$$
\vec{a}^{\prime} V \vec{a}
$$

where a^{\prime} is represents the (column) vector a written as a row vector.

Linear Combinations

Suppose $\vec{X}=\left\{X_{1}, X_{2}, X_{3}\right\}$ is a vector of random variables with variance matrix

$$
V=\left[\begin{array}{rrr}
\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{2}^{2} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{3}^{2}
\end{array}\right]
$$

Find the variance of the linear combination $2 X_{1}-X_{2}+X_{3}$

Linear Combinations

Suppose $\vec{X}=\left\{X_{1}, X_{2}, X_{3}\right\}$ is a vector of random variables with variance matrix

$$
V=\left[\begin{array}{rrr}
\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{2}^{2} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{3}^{2}
\end{array}\right]
$$

Find the variance of the linear combination $2 X_{1}-X_{2}+X_{3}$ In this case, $\vec{a}=\{2-11\}$, and the variance of the linear combination is the quadratic form:

$$
\vec{a}^{\prime} V \vec{a}=\left[\begin{array}{lll}
2 & -1 & 1
\end{array}\right]\left[\begin{array}{rrr}
\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{2}^{2} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{3}^{2}
\end{array}\right]\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right]
$$

Linear Combinations

First carry out the multiplication of $\vec{a}^{\prime} V$

$$
\vec{a}^{\prime} V \vec{a}=\left[\begin{array}{lll}
2 & -1 & 1
\end{array}\right]\left[\begin{array}{rrr}
\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{2}^{2} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{3}^{2}
\end{array}\right]\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right]
$$

Linear Combinations

First carry out the multiplication of $\vec{a}^{\prime} V$

$$
\begin{gathered}
\vec{a}^{\prime} V \vec{a}=\left[\begin{array}{lll}
2 & -1 & 1
\end{array}\right]\left[\begin{array}{rrr}
\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{2}^{2} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{3}^{2}
\end{array}\right]\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right] \\
{\left[\left(2 \sigma_{1}^{2}-\sigma_{12}+\sigma 13\right)\left(2 \sigma_{12}-\sigma_{2}^{2}+\sigma_{23}\right)\left(2 \sigma_{13}-\sigma_{23}+\sigma_{3}^{2}\right)\right]}
\end{gathered}
$$

Linear Combinations

$$
\left[\left(2 \sigma_{1}^{2}-\sigma_{12}+\sigma 13\right)\left(2 \sigma_{12}-\sigma_{2}^{2}+\sigma_{23}\right) \quad\left(2 \sigma_{13}-\sigma_{23}+\sigma_{3}^{2}\right)\right]\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right.
$$

Linear Combinations

$$
+(1)\left(2 \sigma_{13}-\sigma_{23}+\sigma_{3}^{2}\right)
$$

Linear Combinations

$$
\begin{gathered}
+(1)\left(2 \sigma_{13}-\sigma_{23}+\sigma_{3}^{2}\right) \\
\vec{a}^{\prime} V \vec{a}=4 \sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}-4 \sigma_{12}+4 \sigma_{13}-2 \sigma_{23}
\end{gathered}
$$

