The Covariance

Gene Quinn

Suppose X_1 and X_2 are jointly distributed random variables with

 $E(X_1) = \mu_1$ and $E(X_2) = \mu_2$

Suppose X_1 and X_2 are jointly distributed random variables with

$$E(X_1) = \mu_1$$
 and $E(X_2) = \mu_2$

Define the **covariance** of X_1 and X_2 , denoted by

$$\sigma_{12}$$
 or $Cov(X_1, X_2)$

as:

$$Cov(X_1, X_2) = \sigma_{12} = E(X_1X_2) - E(X_1)E(X_2)$$

Following the usual procedure, we calculate E(XY) as:

$$\mathsf{E}(XY) = \int \int_{S} xy \, f_X Y(x, y) \, dx \, dy$$

where S is the region of support of f_{XY}

A standard way of encoding the relationship between two jointly distributed random variables is the **variance-covariance matrix**.

A standard way of encoding the relationship between two jointly distributed random variables is the **variance-covariance matrix**.

Definition: The variance-covariance matrix for two jointly distributed random variables X_1, X_2 is the matrix V with:

- The i^{th} diagonal element is $\sigma_i^2 = Var(X_i)$
- The off diagonal elements are σ_{ij} , $i \neq j = Cov(X_i, X_j)$

A standard way of encoding the relationship between two jointly distributed random variables is the **variance-covariance matrix**.

Definition: The variance-covariance matrix for two jointly distributed random variables X_1, X_2 is the matrix V with:

- The i^{th} diagonal element is $\sigma_i^2 = Var(X_i)$
- The off diagonal elements are σ_{ij} , $i \neq j = Cov(X_i, X_j)$

For a bivariate distribution,

$$V = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}$$

For a trivariate distribution,

$$V = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_2^2 & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_3^2 \end{bmatrix}$$

For a trivariate distribution,

$$V = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_2^2 & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_3^2 \end{bmatrix}$$

With four variates,

$$V = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} & \sigma_{14} \\ \sigma_{12} & \sigma_2^2 & \sigma_{23} & \sigma_{24} \\ \sigma_{13} & \sigma_{23} & \sigma_3^2 & \sigma_{34} \\ \sigma_{14} & \sigma_{24} & \sigma_{34} & \sigma_4^2 \end{bmatrix}$$

If the variates are independent, all covariances are zero and V is diagonal:

$$V = \begin{bmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_3^2 \end{bmatrix}$$

Linear Combinations

Suppose \vec{X} is a vector of random variables and \vec{a} is a vector of weights.

Linear Combinations

Suppose \vec{X} is a vector of random variables and \vec{a} is a vector of weights.

The variance of the linear combination

 $\vec{a} \cdot \vec{X}$

is the quadratic form:

 $\vec{a}'V\vec{a}$

where a' is represents the (column) vector a written as a row vector.