The Covariance

Gene Quinn

Definition

Suppose X_{1} and X_{2} are jointly distributed random variables with

$$
\mathrm{E}\left(X_{1}\right)=\mu_{1} \quad \text { and } \quad \mathrm{E}\left(X_{2}\right)=\mu_{2}
$$

Definition

Suppose X_{1} and X_{2} are jointly distributed random variables with

$$
\mathrm{E}\left(X_{1}\right)=\mu_{1} \quad \text { and } \quad \mathrm{E}\left(X_{2}\right)=\mu_{2}
$$

Define the covariance of X_{1} and X_{2}, denoted by

$$
\sigma_{12} \text { or } \operatorname{Cov}\left(X_{1}, X_{2}\right)
$$

as:

$$
\operatorname{Cov}\left(X_{1}, X_{2}\right)=\sigma_{12}=\mathrm{E}\left(X_{1} X_{2}\right)-\mathrm{E}\left(X_{1}\right) \mathrm{E}\left(X_{2}\right)
$$

Definition

Following the usual procedure, we calculate $\mathrm{E}(X Y)$ as:

$$
\mathrm{E}(X Y)=\iint_{S} x y f_{X} Y(x, y) d x d y
$$

where S is the region of support of $f_{X Y}$

Definition

A standard way of encoding the relationship between two jointly distributed random variables is the variance-covariance matrix.

Definition

A standard way of encoding the relationship between two jointly distributed random variables is the variance-covariance matrix.
Definition: The variance-covariance matrix for two jointly distributed random variables X_{1}, X_{2} is the matrix V with:

- The $i^{\text {th }}$ diagonal element is $\sigma_{i}^{2}=\operatorname{Var}\left(X_{i}\right)$
- The off diagonal elements are $\sigma_{i j}, i \neq j=\operatorname{Cov}\left(X_{i}, X_{j}\right)$

Definition

A standard way of encoding the relationship between two jointly distributed random variables is the variance-covariance matrix.
Definition: The variance-covariance matrix for two jointly distributed random variables X_{1}, X_{2} is the matrix V with:

- The $i^{\text {th }}$ diagonal element is $\sigma_{i}^{2}=\operatorname{Var}\left(X_{i}\right)$
- The off diagonal elements are $\sigma_{i j}, i \neq j=\operatorname{Cov}\left(X_{i}, X_{j}\right)$

For a bivariate distribution,

$$
V=\left[\begin{array}{rr}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right]
$$

Definition

For a trivariate distribution,

$$
V=\left[\begin{array}{rrr}
\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{2}^{2} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{3}^{2}
\end{array}\right]
$$

Definition

For a trivariate distribution,

$$
V=\left[\begin{array}{rrr}
\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{2}^{2} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{3}^{2}
\end{array}\right]
$$

With four variates,

$$
V=\left[\begin{array}{rrrr}
\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} & \sigma_{14} \\
\sigma_{12} & \sigma_{2}^{2} & \sigma_{23} & \sigma_{24} \\
\sigma_{13} & \sigma_{23} & \sigma_{3}^{2} & \sigma_{34} \\
\sigma_{14} & \sigma_{24} & \sigma_{34} & \sigma_{4}^{2}
\end{array}\right]
$$

Definition

If the variates are independent, all covariances are zero and V is diagonal:

$$
V=\left[\begin{array}{rrr}
\sigma_{1}^{2} & 0 & 0 \\
0 & \sigma_{2}^{2} & 0 \\
0 & 0 & \sigma_{3}^{2}
\end{array}\right]
$$

Linear Combinations

Suppose \vec{X} is a vector of random variables and \vec{a} is a vector of weights.

Linear Combinations

Suppose \vec{X} is a vector of random variables and \vec{a} is a vector of weights.
The variance of the linear combination

$$
\vec{a} \cdot \vec{X}
$$

is the quadratic form:

$$
\vec{a}^{\prime} V \vec{a}
$$

where a^{\prime} is represents the (column) vector a written as a row vector.

